
Blockchain: Harnessing Linked
Distributed Ledger

Advisor: Dr. Dan Tamir
USCG Mentor: Blair Sweigart

Kian O’Ryan
Maria Tomasso

DHS Challenge
• Distributed ledger technologies (DLT) have received widespread attention in the past decade for their role in
cryptocurrencies,

• Recently, they have shown promise in enterprise applications such as supply chain management, finance, and
digital ownership.

• Many organizations are investigating the usefulness of DLT in their domain and parsing its true capabilities
from the hype, including institutions within the United States government.

• This summer, we worked with the United States Coast Guard (USCG) to study important aspects of DLT and
prepare a summary for use by USCG leadership. We have:
• Studied the foundations of DLT
• Analyzed DLT platforms developed for enterprise
• Examined deployed DLT applications in USCG areas of interest
• Developed novel applications of smart contracts for USCG missions
• Researched compression and encryption in tandem as a potential security enhancement to the blockchain

DLT Background

DLT Background
• DLT is a decentralized system of accounting in which every participant maintains a full copy of

the ledger, and all ledgers are kept in synch via consensus mechanisms.
• Blocks store sets of transactions. The blocks are joined by cryptographic links, which prevent

tampering with past transactions. The entire ledger is made up of these linked blocks, hence the
term ‘blockchain’.

• An asset is any currency or object managed by a DLT.
• The early DLTs used for cryptocurrencies (Blockchain 1.0/2.0) were permissionless, meaning

anyone could join the system and contribute to consensus.
• In enterprise applications (Blockchain 3.0), permissioned blockchains are preferred to maintain

a higher level of trust. Only approved participants can join and interact with the chain. This
mitigates some of the drawbacks of Blockchain 1.0 and 2.0 such as vulnerability to attacks and
high electricity usage

DLT: Blockchain

Smart Contracts

• Smart contracts were introduced in Blockchain 2.0 and provide a
mechanism to automate transactions fairly via DLT.
• They are self-executing units of code that can govern assets.
• Early uses include agentless escrow, while Blockchain 3.0 has further

refined them to automate many types of processes

DLT for Enterprise with Use Cases
for USCG

Hyperledger Fabric
• We have determined that Hyperledger Fabric (HLF) is the preferred platform for

enterprise DLT tools at this time.
• In (Nanayakkara, 2021) Hyperledger Fabric ranked the highest among 24 DLT

platforms for its scalability, interoperability with existing software, ease-of-use,
security, and community availability.

• In (Vadgama, N., & Tasca, 2021), HLF was found to be both the most popular
platform in enterprise and the platform with the highest percentage of market-
ready projects.

Use Case 1: Seafood Traceability
• Illegal, unregulated, and unreported (IUU) fishing threatens sustainability, food security,

and the livelihoods of coastal workers.
• Furthermore, an estimated 24.9 million people are being coerced to work in IUU fishing

globally.
• Prior solutions include electronic monitoring of vessels within fisheries and laboratory

testing on commercial seafood products to determine providence, but IUU fishing
persists.

• DLT has been proposed as a method of increasing visibility within the supply chain and
validating the providence of legitimate seafood products.

• By removing the financial incentives for IUU fishing, this system would also address the
crimes associated with IUU fishing such as forced labor.

Use Case 1: Seafood Traceability
• The IBM-developed Food Trust is HLF-based DLT designed to

enhance traceability in food supply chains.
• Pilot studies are currently being evaluated by Walmart, Nestle, and

Unilever with promising initial results.

Use Case 2: Inventory Management Systems
• Aircraft spare parts management (ASPM) requires extensive record

keeping
• ASPM also involves tracking between entities to ensure safety and

efficiency of operations.
• Current ASPM practices are labor-intensive with a risk of errors
• DLT could reduce errors and enhance data integrity between

organizations.

Use Case 2: Inventory Management Systems
• Honeywell has implemented a blockchain-based market called

GoDirect Trade for aircraft spare parts.
• Honeywell credits the scalability of the online market to automation

via smart contracts.

Use Case 3: Counterfeit Detection
• An estimated 10% of drugs in low- and middle-income countries and

1-2% of drugs in high-income countries are counterfeit, posing serious
and sometimes lethal risks to patients.
• The issue is compounded by a fragmented supply chain making recalls

more difficult once a fraudulent drug has been identified.

Use Case 3: Counterfeit Detection
• Mediledger is an HLF based system that allows patients and health

officials to track drugs throughout the supply chain to ensure
authenticity and aid with recalls if a counterfeit or contaminated
products are identified.
• Gilead, Bayer, and Pfizer are currently involved with pilot testing for

this system.

Conclusions

• Permissioned blockchains have utility towards USCG missions
• The immutable nature of DLT provides a strong foundation for

enhancing traceability in supply chains
• Smart contracts can automate processes that would otherwise be

time-consuming and prone to errors
• Fully developed platforms exist for implementing enterprise DLTs,

many of which are interoperable with existing systems

Harnessing Smart Contracts

Blockchain : Smart
Contracts
• The datum within each block may contain

code for executable programs.

• The code for executable programs is
mapped to specific accounts. These
accounts are called Smart contracts.

• Smart contract (SC) accounts may receive
external to blockchain information via
data feeds.

• Data feeds information integrity is not
guaranteed; data feed aggregation can
help improve information accuracy.

Leasing Agreement
Smart Contracts via
DLT
• Signing parties contact the Leasing

Template Generator

• Leasing Template Generator receives
lease terms from the leaser and lessee
and generates an Unsigned Leasing
Agreement (ULA)

• Data Feeds Aggregator relies on external
feeds to map accounts to real identities.

• Once signing parties are authenticated
ULA generates a signed agreement.

• The signed agreement has no contract
owner and can not be deleted.

Leasing Agreement
Smart Contracts via
DLT
• Once signing parties are authenticated,

ULA generates a signed agreement.

• To liberate network resources, the signed
agreement SM asks the leasing template
generator to delete the unsigned leasing
agreement.

• The signed agreement has a built-in
arbitration function that signing parties
may use to request arbitration to resolve
disputes.

• The data feed aggregator is provided with
arbitration results.

Fishing Smart
Contracts via DLT
• Fishing companies are required to

provide specific data to the blockchain.
This includes fishing data, GPS
coordinates and licenses.

• USCG creates and controls smart
contracts that monitor the blockchain.

• Fishing companies provide with the
blockchain with their documentation,
once verified by a smart contract, a
fishing license can be automatically
issued.

Fishing Smart
Contracts via DLT
• Smart contracts can monitor GPS and

fishing data and issue warnings, fines and
sanctions based on any detected
discrepancies.

Improving Shannon-Fano-Elias
Rate and Encryption Resilience

Introduction
• The traditional method for preforming compression and encryption of data is to

first compress the data with a given data compression method, then encrypt the
compressed data.

• Tandem data compression and encryption might be more efficient with respect
to throughput than performing compression and encryption separately.

• Shannon Fano Elias (SFE) code is a leading candidate for this method, but its
compression capabilities are not as competitive as other compression
techniques such as Huffman coding and Lempel Ziv-based coding.

Terminology

• FLC, VLC, and uniquely decodable code
• The average source code length (code rate) is given by:

𝐿(𝑠) =&
!

𝑝(𝑎!)×𝑙(𝑎!)

• It is measured as bits/symbol.
• The entropy of a source is given by:

𝐸(𝑠) =&
!

𝑝(𝑎!)×𝑙𝑜𝑔"((𝑃(𝑎!))

• According to Shannon theory, the entropy is the lower bound on code rate.

Permutations on symbol-order
• Huffman code enables a limited number of permutations of the order of symbols (hence their code-words) that yield the same

rate.
• Theoretically, for SFE compression, each permutation on symbol order can yield a set of different code words with same rate.

• Hence with n symbols there might be as many as n! permutations
• Our research is the first to demonstrate that the number of effective permutations is much lower than the upper bound of

n!.
• Hence, SFE can be used in private key encryption where the permutation is the key.

• The resilience of the schema is a function of the number of permutations.
• In general, however, SFE coding rate is inferior to Huffman coding rate.

Symbol Probability Huffman-A Huffman-B SFE-A SFE-B

B 0.25 10 10 100 100

A 0.125 110 111 101 110

D 0.5 0 0 00 01

C 0.125 111 110 110 110

Rate of Entropy Codes

• The improved SFE uses an algorithm, developed by Tamir, to reduce the average length of SFE
coding.
• The extended Huffman / SFE uses an extended alphabet by producing all the combinations of k

symbols and applying Huffman / SFE to the new alphabet.
• Hence the number of symbol order permutations increase exponentially with the number

symbol combinations.
• The improved extended SFE runs the improved SFE algorithm on an extended SFE alphabet.
• Huffman code is bounded by Entropy + one bit. SFE is bounded by entropy + two bits. The

extended versions can approach entropy.
• Often, the improved SFE algorithm eliminates one bit from each code word while maintaining UD.

Experiments

We did the following steps to test each method of SFE:
1. Implemented each variant.
2. Ran each variant on all the files from the Silesia and Calgary

Benchmarks.
3. Compared their average lengths and effective number of symbol

order permutations (resilience).

Results

Results (cont.)

Extended SFE with three Combinations

• The alphabet becomes too large.
• Probabilities become too small.
• Some combinations may have the same code word.

Future work
• Explore the dynamic SFE and arithmetic coding.

Acknowledgement

This research was performed under an appointment to the U.S. Department of
Homeland Security (DHS) Science & Technology (S&T) Directorate Office of
University Programs Summer Research Team Program for Minority Serving
Institutions, administered by the Oak Ridge Institute for Science and Education
(ORISE) through an interagency agreement between the U.S. Department of Energy
(DOE) and DHS. ORISE is managed by ORAU under DOE contract number DE-
SC0014664. All opinions expressed in this paper are the author’s and do not
necessarily reflect the policies and views of DHS, DOE or ORAU/ORISE.

