
CYBER RESILIENT ENERGY DELIVERY CONSORTIUM | CRED-C.ORG

FUNDING SUPPORT PROVIDED BY THE DEPARTMENT OF ENERGY, OFFICE OF ELECTRICITY DELIVERY & ENERGY RELIABILITY

PUTTING A NUMBER TO RESILIENCY

• Make cyber-physical resilience measurable!
– Create a metric that integrates factors from cyber and physical domains and

integrate them to one, easy-to-understand metric

– Use system level and device level factors, graph theory based system analysis,

physics based analysis, and system measurements

– Resulting metric enables better planning/ decision support and better visibility for

operator!

• For device-level, a data-driven resilience metric and countermeasure

against ongoing attacks that evade software-based detection
– Analysis of the controller software to measure their intrusion resilience

– Analysis of physical dynamics to understand their temporal evolution

RESULTS

• Three scenarios are presented – i) Loss of node, ii) Loss of link, iii)

Netflix Chaos Monkey inspired random failure

– CP-SAM updates over time to help operator quickly understand the

resilience of the system

System Level Metrics: CP-SAM

• Security assessment and resiliency – system security with

contingencies will enable resiliency

• What are the factors that affect the resiliency of the electric grid, and

how to measure this resiliency?

• CP-SAM is a comprehensive metric that combines cyber and physical

factors into a single metric instead of studying the effect of cyber

vulnerabilities on the power system

WHAT WE DO

HOW DOES THIS NUMBER HELP?

• CP-SAM can be use by operators to monitor the real-time resiliency of

the system

• CP-SAM reflects the resilience of the system for various stages of a

cyber-attack including vulnerabilities detected and exploited, elevated

privileges gained, malicious activity resulting in physical impact, and

effect of control actions such as reconfiguration of the microgrid

• Controller device attacks are terminated and responded to in real-time

INTERACTION WITH OTHER PROJECTS

• We’re interested in collaboration with industry and vendors to get

feedback on our models, techniques, and tools to determine the real

time resiliency of a system.

• We anticipate collaboration with ongoing CREDC activities on intrusion

detection and runtime security monitoring, which will be used to update

resilience measurements based on the current state of the system.

FUTURE EFFORTS

• Working on the details of our preliminary intrusion resilience metric

design and system-level resilience metric.

• Will deploy and validate our metric on real-world testbeds.

• Will develop device-level intrusion response capabilities and system-

level defense mechanisms to enhance resiliency.

https://cred-c.org/researchactivity/metrics-and-tools-measuring-

cyber-resiliency-electric-grids

V. Venkataramanan, Tushar, V. V. G. Krishnan, A. Srivastava, A. Hahn – Washington State University

Metrics and Tools for Measuring Cyber Resiliency of

Electric Grids

CP-SAM for various cases

Considering various factors from different domains

and integrating them to compute a resilience metric

KEY CHALLENGE -

Control/

Actuator

Measureme

nt

Power

System

Layer

Device

Layer

Commun-

ication

Layer

Manage-

ment

Layer

Resilience-aware

CPS model

generation

• Attack graph based

topology, and

vulnerability information

• Graph theory based

physical network

topology metrics

• Real-time measurements

including latency, alerts

from IDS, device and

algorithmic resiliency,

and physical system

constraints including

power-flow, voltage

constraints

Determining factors

affecting resiliency

using attack trees

Determine fuzzy weights

for each factor based on

Shapely value

Combine measured

values and weights

with Fuzzy Choquet

Integral

CP-SAM

Transmission physical resiliency for various cases• Transmission system resiliency metric is computed at each

transmission system substation that is aggregated with distribution

and microgrid resiliency to obtain the overall system resiliency

• Attributes defining transmission resiliency are:

– Network configuration

– Redundancy in network and source of power supply

– Vulnerabilities like a single transmission line in all redundant paths

– Variability and Availability of power supply

Device Level Resiliency

• Controller resiliency metric/countermeasures are developed (below)Anonymous submission #871 to ACM CCS2017

Goals and Contr ibutions. Our solution starts with time pro l-

ing and feature extraction processes upon control program on the

basis of LLVM analysis passes, then we apply data- ow analysis

technology to determine the variable changes and their mutual

dependencies in targeted code segment. And hence we establish

and train an adaptive neural network model to approximate the

logic behaviors of that selected code segment, which owns similar

semantic but faster running speed and will generate the estimated

actuator outputs to compare with the outputs from original control

logic. We maintain the neural model in protected memory unit and

de ne risk assessment to detect and recover the controller from

exploitation and attacks.

In this paper, we made the following main contributions:

(1) Weprovideanovel defense mechanism: control logic ismon-

itored by a semantic-close approximation model constructed

with LLVM analysis and represented by neural network.

(2) We practically load the light-weight pre-trained neural net-

work using MPU techniques to automatically monitor ARM-

based embedded physical system.

(3) We design the risk assessment and recovery strategies when

facing possible attacks.

We would like to highlight the novelty of our solution lies in

automatic analysis and build-up of neural network approximation

model, which provides trusted back-up actuator outputs by sitting

in protected memory unit. The comparison-based risk assessment

and recovery mechanism in real drone application clearly shows

that our solution preventsthecorecontrol logic from multiplecyber

physical attacks with a holistic point of view.

The structure of this paper is as follows: Section 3 provides

background on LLVM toolkit and neural network application, in

addition presents our system model and threat model. Section 4

describes the prototype design details and technical process of pro-

gram transformation. Section 5 demonstrates the implementation

details about algorithms and its mathematical expression. Section 6

presents the environment setting and practical experiment in phys-

ical devices. Section 7 gives a general overview of related work in

CPSsecurity domain. We summary our exploration and conclude

in Section 8

2 MOTIVATION

Through running malicious control logic, attackers utilize security

vulnerabilities in control system to make physical actuation behave

unsafely. Past e orts [9, 26, 28, 40] to ensuresafety of codeexecuted

on controller have focused on forming veri cation conditions for

reachable execution branches and checking thesecurity boundaries

violation. These long-standing strategies produce very little e ects

in defending against controller rmware exploitation represented

by Harvey [15], in which case the attacker compromises and takes

over the rmware to bypass the veri ed code and hide malicious

operation.

Toprevent sophisticatedattackson control kernel or core rmware,

we set our sights on the protection of essential control logic itself.

We determine to zoom in control program and build a trusted

backup computation as safety reference, through which we can

tell if the actuators work properly in comparison between output

values in original control logic and approximated logic. For sure,

Input Module

Output Module

Control Logic
Approximate

Computing

Validation

Protected Memory

Sensors

Micro-controller

Actuators

Attacker

…

…

Figure 1: Overal l Architecture

the simplest way to achieve this is to duplicate the controller with

additional devices, but extra device is thought to be uneconomical

and kind of waste of computing resources, which also might cause

indecent size expansion and otherssidee ects like cooling problem

in micro-processors. Thus we are seeking to build safe backup as

comparison basis to monitor the original control logic with the

following anticipated features: (1) it is very light-weight and runs

faster than main execution cycleof micro-controller so that it could

stop the unsafe operations before causing further harm to the sys-

tem, and this also indicates that it should consume relatively small

amount of computing resources to avoid redundant performance

overhead; (2) it is needed to be put in a trust-worthy space, sit-

ting outside of the main control memory layer, and guaranteed

to provide the safe computation values even when control logic

gets compromised. Thus we choose neural network to response

the rst need, which could alter the repeated massive numerical

computations in controller to re ect the mapping relation between

sensor inputsand actuator outputs in simpled and faster way. While

execution speed and accuracy have been widely acknowledged as

basic trade-o s, we balance them by digging deeper into how we

select suitable code segment and well-directed train the suitable

neural network model. We answer the need of low performance

overhead by leveraging the characteristics of existing control logic,

also called reactive control [8], that is, only when recognizing the

changesof sensing parameters will werun thebackup model rather

than constantly execute it for every execution cycle. The second re-

quirement motivated our exploration in hardwareprotection unit in

micro-processor since theexterior devices like Raspberry Pi arenot

applicable in embedded system and the communication between

them also could beanother issue. Weapply memory protection unit

(MPU), a widely-used hardware technique in ARM processor, to

assign protected memory region and ensuresafety of approximated

backup model. We implemented memory access control by setting

the write/read permission to privileged memory overlays [12], and

thus we establish a light-weight and safe model to monitoring the

control logic in real-time.

2

Anonymous submission #871 to ACM CCS2017

Figure 3: MPU architecture

of the region, the MPU will allow the kernel to read and write into

that memory section; If the request causes thememory accessviola-

tion, the MPU will reject it and generate a corresponding abnormal

signal based on the violation category.

3.3 Threat Model

Unlike large scale cyber physical system which might face the

rmware modi cation [15], the challenges for embedded system or

MCU mostly exist among the memory space and control program.

We assume a remote attacker with knowledge of the memory ar-

chitecture and framework of ARM-based embedded system. The

attacker is capable of launching memory-related exploits such as

memory corruption [20] and memory remapping. And in order

to achieve the goal of manipulating the control logic or causing

systematic collapse, the attacker may also use false data injection,

modi cation of system-critical I/O stream and fail the system by

code injections and remote programing [37].

We assume the MCU in embedded system is currently market-

existing and equipped with MPU hardware support that enables

user and privilege mode. The RTOSrunning on the MCU should at

least contain time and task management feature like task scheduler

and switcher.

4 DESIGN

This section explains basic ideas of how we design the program

analysis and transformation process to achieve the nal parallel

control logic examination and recovery when facing attacks.

In order to have a comparison result to check the validation of

original execution, we expect to establish an approximated model

on the basis of source code, which expresses the same control logic

but runs signi cantly faster. Thus we need time pro ling result

to gure out the ratio of time consuming in original source code,

then try to investigate certain portion and imitate it with a faster

alternative model. Eventually, we should set up this approximation

in a relatively safe-guaranteed location as back-up computation in

Program

Reconst ruct ion
Neural N etwork

Replacement

Runt im e

Evaluat ion

Global Vector

Const ruct ion

Live Variable

Set

Generat ion

Loop Body

Data Flow

Analysis

LV

Live Variable

Set Generat ion

Control

Source Code

Iterat ive Control

Program

Recursive Cont rol

Program

Loop

Inform at ion

collect ion

LoopInfo LoopLocat ionLoopBodyLoop Tim e Profiling

Neural

Network

Approxim ation

Set Logical

Calculat ion

... ...

G

V

Control Flow

Graph Ext ract ion

Basic Block

Worklists

Data Flow Analysis at

Instruct ion Level

Training

Inputs and

Outputs

Collect ion

Training

Process with

M ult iple

M ethods

Training

Error

Evaluat ion

Figure 4: Design architecture

real-time running environment and can recover the control logic

when attacks or intrusions are detected.

4.1 Time Pro l ing

For the sake of obtaining faster running approximation of the orig-

inal control program, we need time pro ling information to mark

out which part weshould work on. In fact, wewould like to empha-

size that we not only explore the time consuming of functions in

program but also dig even deeper to probe the in-function pro ling

information.

Since we have many options to learn the time spending for func-

tions, one of the typical ways is to compile and link the program

with instrumentation and sampling code. Then user will be pro-

vided with the computed pro ling information such as total time

execution or time spending of each function based on their settings

and demandsafter executing thecompound program. However, this

is not e cient at all for our goal because approximating an entire

function can easily reach scalability restriction when facing a large

and complex function unit. That is why we design an in-function

pro ling process. In a common control program, there is no doubt

that loops usually take up the biggest share of whole running time

in functions, especially those loops that contain massive numerical

calculations(e.g. iterative algorithm). Thus they become our appro-

priate objectsof transformation process to compress time spending.

Before we generate approximated model from them, the rst thing

is how we locate loops in a program. We view the entire program

as a whole module which consist of function chunks, global vari-

ables, macro de nitions and so on. We start with this module and

traverse the internal function chunks in order. We can identify

those loops through a wrapper pass analysis of control ow graph

(CFG) and mark them out to sequentially store in a worklist, in

which o ers interfaces to access and traverse the inner basic blocks

4

Anonymous submission #871 to ACM CCS2017

Figure 3: MPU architecture

of the region, the MPU will allow the kernel to read and write into

that memory section; If the request causes thememory accessviola-

tion, the MPU will reject it and generate a corresponding abnormal

signal based on the violation category.

3.3 Threat Model

Unlike large scale cyber physical system which might face the

rmware modi cation [15], the challenges for embedded system or

MCU mostly exist among the memory space and control program.

We assume a remote attacker with knowledge of the memory ar-

chitecture and framework of ARM-based embedded system. The

attacker is capable of launching memory-related exploits such as

memory corruption [20] and memory remapping. And in order

to achieve the goal of manipulating the control logic or causing

systematic collapse, the attacker may also use false data injection,

modi cation of system-critical I/O stream and fail the system by

code injections and remote programing [37].

We assume the MCU in embedded system is currently market-

existing and equipped with MPU hardware support that enables

user and privilege mode. The RTOSrunning on the MCU should at

least contain time and task management feature like task scheduler

and switcher.

4 DESIGN

This section explains basic ideas of how we design the program

analysis and transformation process to achieve the nal parallel

control logic examination and recovery when facing attacks.

In order to have a comparison result to check the validation of

original execution, we expect to establish an approximated model

on the basis of source code, which expresses the same control logic

but runs signi cantly faster. Thus we need time pro ling result

to gure out the ratio of time consuming in original source code,

then try to investigate certain portion and imitate it with a faster

alternative model. Eventually, we should set up this approximation

in a relatively safe-guaranteed location as back-up computation in

Figure 4: Design architecture

real-time running environment and can recover the control logic

when attacks or intrusions are detected.

4.1 Time Pro l ing

For the sake of obtaining faster running approximation of the orig-

inal control program, we need time pro ling information to mark

out which part weshould work on. In fact, wewould like to empha-

size that we not only explore the time consuming of functions in

program but also dig even deeper to probe the in-function pro ling

information.

Since we have many options to learn the time spending for func-

tions, one of the typical ways is to compile and link the program

with instrumentation and sampling code. Then user will be pro-

vided with the computed pro ling information such as total time

execution or time spending of each function based on their settings

and demandsafter executing thecompound program. However, this

is not e cient at all for our goal because approximating an entire

function can easily reach scalability restriction when facing a large

and complex function unit. That is why we design an in-function

pro ling process. In a common control program, there is no doubt

that loops usually take up the biggest share of whole running time

in functions, especially those loops that contain massive numerical

calculations(e.g. iterative algorithm). Thus they become our appro-

priate objectsof transformation process to compress time spending.

Before we generate approximated model from them, the rst thing

is how we locate loops in a program. We view the entire program

as a whole module which consist of function chunks, global vari-

ables, macro de nitions and so on. We start with this module and

traverse the internal function chunks in order. We can identify

those loops through a wrapper pass analysis of control ow graph

(CFG) and mark them out to sequentially store in a worklist, in

which o ers interfaces to access and traverse the inner basic blocks

4

Framework for microgrid resiliency

A. Ding and S. Zonouz - Rutgers University

