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Problem statement from City perspective

1) What are the City’s risks from interconnections between multiple 
infrastructure systems?

2) How do we decrease those risks and protect against attacks and 
failures?



Solution
1) Know where the connections are
2) Build a model of your system
What is connected to what
What depends on what

Application

To demonstrate the proposed framework and our approach, we ap-
plied it to the interdependent water and power distribution networks
in Atlanta, Georgia. We modeled the system and performed infer-
ence on the network using the model. We validated the methodol-
ogy by comparing the results from inference using the constructed
model to a real-world scenario in which a power outage led to
cascading failures in the water system.

System Overview

For the water system, we analyzed pipes greater than or equal to 18
inches in diameter. This included 112 components, seven of which
were supply stations and 105 of which were transshipment or
distribution nodes. There were 244 links, or pipes, in the network.
For the power system, we modeled the power substations that were
located at each supply node. Supply nodes had between one and
three electrical feeds, varying with each supply component.

Fig. 6 shows the system with supply nodes shown as empty
circles and distribution and transshipment nodes shown as solid
points. The supply nodes are also the locations of the power
components.

Bayesian Network Model

We then used the proposed framework to create the BN model of
the interdependent infrastructure systems.

Inputs
The input file was 4 MB and included identification numbers and
locations of 112 junctions in the water network. The start and end
junctions and size characteristics of 350 pipes were included. The
junctions were condensed to represent the start and end junctions of
each pipe rather than accounting for all on-pipe junctions.
Component Locations. The component locations were given as
state-plane coordinates in the example.
Component Connectivity. The component connectivity for the
application was obtained from a list of each link in the network
used in the hydraulic model of the system.

Component Type. The component types for the application were
defined depending on their function, i.e., supply, transshipment,
or distribution. The constituent elements of supply nodes, i.e., for
pump stations and treatment plants, were aggregated into a single
node for each supply. If such element-level information is available,
it can easily be incorporated into the model as parents of the supply
node. Supercomponent identification can be utilized to reduce
dimensionality as needed.
Component Failure Probability. For the application, component
failure probabilities were assumed to be consistent across each
component in order to better assess relative component vulnerabil-
ities. The failure probabilities given that a hazard occurred or did
not occur were assumed to be 1 × 10−2 or 1 × 10−4, respectively.
The hazard in the example was generalized and could, for example,
represent a storm. The equal prior failure probabilities across com-
ponents resulted in ranking and component prioritization rather
than specific failure probability values. If more information is
learned about the components, the failure probabilities can easily
be updated as inputs to the model.

Dimensionality Reduction
Running Algorithm 1 for the full system identified the MLSs from
a supply node to each of the transshipment and distribution nodes in
the network. This took approximately 2.19 s on a computer with
4 GB RAM and a 1.3 GHz Intel Core i5 processor using MATLAB
2017b for the entire network. This was a novel algorithm to identify
MLSs, because none were found in previous literature. There were
246 MLSs in the full system. The maximum number of MLSs
for a component was 5 and the maximum length of an MLS was
17 components. An example set of MLSs for node C7 is

!
C108; C58; C59; C7

C108; C60; C59; C7

"

where the first component in each row is a supply node and the
middle nodes are on the path to the final node. Supercomponents
were not needed for this example.

Defining Interdependencies
The interdependencies modeled in the application were service pro-
vision and geographic. Service provision interdependencies were
based on information provided by the owners of the water network.
There were power substations located at each of the water supply
stations. Each supply station had between one and three power sub-
stations. To model the service provision interdependencies, direct
links were added from each power substation to the water supply
node that it supplied. Backup generators could also be incorporated
to account for continued power in the case of an outage of a main
substation. There were a total of 15 power substations in the
network that provided power to seven water supply nodes.

We partitioned the water and power networks into hazard zones
that were used to represent geographic interdependencies. These
hazard zones also represented service areas surrounding each of
the water supply nodes. The seven zone partitions for the network
are shown in Fig. 7.

Four of the service areas were split into two groups for ease of
computation during inference. Therefore, in total, there were 11 par-
titions with hazard nodes as parents for the nodes in each of them.
Nodes were also created as children of the distribution nodes in each
zone, representing levels of service in each service area.

Adjacency Matrix
We build the adjacency matrix from identified MLSs and inter-
dependency relationships between nodes. Each MLS was a
parent of its dependent component node, and the components thatFig. 6. Atlanta water and power distribution systems.
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Water ßà power

MLSs denoted Water MLS1; : : : ;Water MLS246. MLSs are parents
of the distribution components that they supply. The subscripts
represent the number of nodes of each type in the network; the
BN comprised 382 total nodes.

Validation

We validated the model using a real-world scenario of cascading
failures due to the interdependent nature of infrastructure networks
that occurred in both 2014 and 2017. In these instances, a water
pump station lost power from both of its dual feeds and caused
outages throughout Atlanta’s downtown area. The water system

lost pressure in both cases and a boil water advisory became nec-
essary. To test the scenario with the model, we simulated an outage
to the power components supplying the affected pump station. The
resulting network showed outages throughout the downtown area,
as shown in Fig. 9. This was consistent with the outcomes of the
event in which the downtown area lost water pressure. We used the
loss of water pressure as an indicator for failure at the distribution
level in the example. The BN model included all the complexities
of the functionality and interdependencies of the networks, and
showed the effects of the outage directly.

Example Inferences

With the BN model built, varying inferences could be conducted
over the networks. The validation scenario above is an example
of assessing the impacts of a service provision interdependency,
in which the power supply of a water pump station failed and caused
cascading outages in the water system. Examples of other probabi-
listic vulnerability analyses include assessing the impacts of hazards
occurring in specific zones—geographic interdependencies—
or evaluating the effects of failures within the water system itself.

Fig. 10 shows inference results from a hazard occurring in
hazard zones 1 and 2. The gradient on the right represents failure
probabilities. Hazard zones 1 and 2 are in the upper right corner
of the system, so components in that area experienced increased
probabilities of failure. Because the supply nodes were distributed
throughout the rest of the network, no additional outages were
experienced due to this event scenario.

Another example of inference is to assess the effects of an ob-
served outage or the failure of a specific component in the network.
Inference over the BN updates the failure probabilities of all nodes
throughout the network. Fig. 11 shows the results from learning
that a large supply component in the bottom right area of the net-
work has failed. The figure shows the effects of such an outage on
the ability to provide service in that part of the network.

These inferences were performed to highlight the abilities of the
proposed framework. The results shown are a small subset of in-
formation that can be gained from the interdependent infrastructure
model. The model allows a user to input information across a wide

Fig. 8. Overall BN model of Atlanta water and power distribution networks.

Fig. 9. Atlanta outage scenario for validation.
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Solution
3) Test model with previous event data
4) Use model to predict what will 

happen in the future
What the connections will do

MLSs denoted Water MLS1; : : : ;Water MLS246. MLSs are parents
of the distribution components that they supply. The subscripts
represent the number of nodes of each type in the network; the
BN comprised 382 total nodes.

Validation

We validated the model using a real-world scenario of cascading
failures due to the interdependent nature of infrastructure networks
that occurred in both 2014 and 2017. In these instances, a water
pump station lost power from both of its dual feeds and caused
outages throughout Atlanta’s downtown area. The water system

lost pressure in both cases and a boil water advisory became nec-
essary. To test the scenario with the model, we simulated an outage
to the power components supplying the affected pump station. The
resulting network showed outages throughout the downtown area,
as shown in Fig. 9. This was consistent with the outcomes of the
event in which the downtown area lost water pressure. We used the
loss of water pressure as an indicator for failure at the distribution
level in the example. The BN model included all the complexities
of the functionality and interdependencies of the networks, and
showed the effects of the outage directly.

Example Inferences

With the BN model built, varying inferences could be conducted
over the networks. The validation scenario above is an example
of assessing the impacts of a service provision interdependency,
in which the power supply of a water pump station failed and caused
cascading outages in the water system. Examples of other probabi-
listic vulnerability analyses include assessing the impacts of hazards
occurring in specific zones—geographic interdependencies—
or evaluating the effects of failures within the water system itself.

Fig. 10 shows inference results from a hazard occurring in
hazard zones 1 and 2. The gradient on the right represents failure
probabilities. Hazard zones 1 and 2 are in the upper right corner
of the system, so components in that area experienced increased
probabilities of failure. Because the supply nodes were distributed
throughout the rest of the network, no additional outages were
experienced due to this event scenario.

Another example of inference is to assess the effects of an ob-
served outage or the failure of a specific component in the network.
Inference over the BN updates the failure probabilities of all nodes
throughout the network. Fig. 11 shows the results from learning
that a large supply component in the bottom right area of the net-
work has failed. The figure shows the effects of such an outage on
the ability to provide service in that part of the network.

These inferences were performed to highlight the abilities of the
proposed framework. The results shown are a small subset of in-
formation that can be gained from the interdependent infrastructure
model. The model allows a user to input information across a wide

Fig. 8. Overall BN model of Atlanta water and power distribution networks.

Fig. 9. Atlanta outage scenario for validation.
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Historical outage
Outcome 1: risk scenarios

range of possible scenarios—for example, outages that are experi-
enced or expected, hazard occurrences, or updated information on a
component such as failure, retrofit, or replacement. The user can
then visualize and observe the updated probabilities of failure in
components throughout the network. The aforementioned infer-
ences were performed in approximately 4 s each. The output was
achieved in a computationally efficient manner and was based on a
full representation of the network, including the performance of its
constituent individual components and the interdependencies that
exist across systems.

Performance Compared to Prior Approaches

To further assess the performance of the proposed methodology, we
compared it to that of prior approaches in several steps of the frame-
work. The MLS enumeration took 2.19 s using the proposed
method. While there were no previous algorithms found in the lit-
erature to identify these MLSs, an algorithm was developed to
enumerate the complement to MLSs, MCSs. Mishra et al. (2015 )
proposed an algorithm to identify MCSs that used the connectivity
matrix of a graph to check the connection between nodes in a net-
work as nodes are progressively removed. The largest system that
this algorithm was tested on in the study contained 21 nodes and 26
links. The enumeration of the MCSs took approximately 2,600 s.
This was over 1,000 times longer for a network that was approx-
imately five times smaller than the application used in this paper.
The MLS formulation we have presented allows us to expand the
number of components that are included in the network with in-
creased computational efficiency compared to other methods of
identifying minimum sets in a network.

Prior approaches to modeling interdependent infrastructure sys-
tems using BNs have focused on network characteristics at the
global level rather than including system topologies from the com-
ponent level to study system reliability and prioritize repair and
retrofit for components. Therefore, the inference examples in this
paper are not comparable to works such as Aung and Watanabe
(2010) and Di Giorgio and Liberati (2011). A BN approach without
MLS formulation was explored by Schaberreiter et al. (2013 ).
However, that study applied to a system of four infrastructure com-
ponent nodes and four service nodes. The approach was not scal-
able to infrastructure systems of the size we were interested in for
this paper or the network used in the application.

Finally, we compared the performance of the proposed method-
ology to results from Monte Carlo simulation. Samples of proba-
bilities of failure for each component were selected based on hazard
occurrence using the same probabilities as described in the appli-
cation for the proposed model. The failure or survival of each com-
ponent was used to update the survival or failure of each MLS.
These updated MLSs were then used to update the survival or fail-
ure of the nodes that depended on them. The outcome was the prob-
ability of survival of each component node. The Monte Carlo was
performed using 103, 104, 105, and 106, and 107 simulations. The
calculated probabilities of survival of all components are shown in
Fig. 12. The solid circles represent the probabilities of survival of
each component calculated using the proposed framework. These
are the exact solutions. The open diamonds, circles, squares, and
triangles and represent the probabilities obtained from 103, 104,
105, and 106 simulations, respectively, and ×s represent those ob-
tained from 107 simulations. The computation times required for
each method and the average percent errors over all components
are presented in Table 5 . As expected for Monte Carlo, the error
decreased with an increase in the number of simulations. However,
the average errors decreased slowly as the order of magnitude

Zones with 
simulated hazard

Fig. 10. Inference results from hazard occurrence in Zones 1 and 2.

Failed supply node

Fig. 11. Inference results from supply node failure.
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range of possible scenarios—for example, outages that are experi-
enced or expected, hazard occurrences, or updated information on a
component such as failure, retrofit, or replacement. The user can
then visualize and observe the updated probabilities of failure in
components throughout the network. The aforementioned infer-
ences were performed in approximately 4 s each. The output was
achieved in a computationally efficient manner and was based on a
full representation of the network, including the performance of its
constituent individual components and the interdependencies that
exist across systems.

Performance Compared to Prior Approaches

To further assess the performance of the proposed methodology, we
compared it to that of prior approaches in several steps of the frame-
work. The MLS enumeration took 2.19 s using the proposed
method. While there were no previous algorithms found in the lit-
erature to identify these MLSs, an algorithm was developed to
enumerate the complement to MLSs, MCSs. Mishra et al. (2015 )
proposed an algorithm to identify MCSs that used the connectivity
matrix of a graph to check the connection between nodes in a net-
work as nodes are progressively removed. The largest system that
this algorithm was tested on in the study contained 21 nodes and 26
links. The enumeration of the MCSs took approximately 2,600 s.
This was over 1,000 times longer for a network that was approx-
imately five times smaller than the application used in this paper.
The MLS formulation we have presented allows us to expand the
number of components that are included in the network with in-
creased computational efficiency compared to other methods of
identifying minimum sets in a network.

Prior approaches to modeling interdependent infrastructure sys-
tems using BNs have focused on network characteristics at the
global level rather than including system topologies from the com-
ponent level to study system reliability and prioritize repair and
retrofit for components. Therefore, the inference examples in this
paper are not comparable to works such as Aung and Watanabe
(2010) and Di Giorgio and Liberati (2011). A BN approach without
MLS formulation was explored by Schaberreiter et al. (2013 ).
However, that study applied to a system of four infrastructure com-
ponent nodes and four service nodes. The approach was not scal-
able to infrastructure systems of the size we were interested in for
this paper or the network used in the application.

Finally, we compared the performance of the proposed method-
ology to results from Monte Carlo simulation. Samples of proba-
bilities of failure for each component were selected based on hazard
occurrence using the same probabilities as described in the appli-
cation for the proposed model. The failure or survival of each com-
ponent was used to update the survival or failure of each MLS.
These updated MLSs were then used to update the survival or fail-
ure of the nodes that depended on them. The outcome was the prob-
ability of survival of each component node. The Monte Carlo was
performed using 103, 104, 105, and 106, and 107 simulations. The
calculated probabilities of survival of all components are shown in
Fig. 12. The solid circles represent the probabilities of survival of
each component calculated using the proposed framework. These
are the exact solutions. The open diamonds, circles, squares, and
triangles and represent the probabilities obtained from 103, 104,
105, and 106 simulations, respectively, and ×s represent those ob-
tained from 107 simulations. The computation times required for
each method and the average percent errors over all components
are presented in Table 5 . As expected for Monte Carlo, the error
decreased with an increase in the number of simulations. However,
the average errors decreased slowly as the order of magnitude

Zones with 
simulated hazard

Fig. 10. Inference results from hazard occurrence in Zones 1 and 2.

Failed supply node

Fig. 11. Inference results from supply node failure.
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Outcome 2: find critical parts of system based 
on risk
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What’s different about our solution
• Everything can be uncertain (unknown future)
• Can easily update risk assessments with new 

data
oNew inspections
oNew retrofits, e.g., install extra backup power 

supply at pumping station
oAny other new information

• Includes infrastructure interconnections 
(interdependencies)



Impact of research: future investments 



Partnership

PI: How has working with 
industry partner informed or 
impacted your work? 

• What decisions are possible, 
worth considering

• Probabilities (underlying #s) 
à impacts (why we care)

City: How did working with researcher 
change or inform how you will address 
future problems in your field?

• Shift in mindset (one system to 
many systems)

• Work across siloes, coordinated 
decisions



Unanticipated challenges and lessons learned 

Researcher

• Data sharing across 
departments

• As early as possible, can shape 
possible research directions

Industry

• Changeovers in mayoral 
administrations and staffs

• Importance of handoffs and 
briefings for continuity
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