GOALS

- Authentication and integrity of control/measurement data is vital for the reliable operation of energy distribution systems.
- Post-Quantum (PQ) computers will render existing cryptographic systems insecure.
- Develop efficient PQ secure key exchange systems
 - Efficient: can be deployed in low-end PMUs
 - Cheap to deploy as compared with physically secure key distribution
 - No additional infrastructure needed

FUNDAMENTAL QUESTIONS/CHALLENGES

- Critical vulnerabilities for smart-grids:
 - False data injection attacks
 - Tampering commands
 - Cascade failures
- PQ secure key exchange is vital
 - Twenty nations are competing to win the quantum future
 - Conventional Crypto (e.g., RSA) will be broken!
- **Existing post-quantum secure methods are NOT enough**
 - Extremely Expensive: ≥ $70k per device
 - Require Fiber Optic Infrastructure: Very expensive to deploy/maintain nationwide

RESEARCH PLAN

- **Design and Implement an efficient Computationally secure post-quantum key distribution**
 - Security is based on computational problems
 - Need to store a few KB of keys on end machines
 - No need for additional hardware
 - No additional infrastructure is needed
 - Minimal maintenance cost
 - Deployable on low-end embedded devices
 - Can be bootstrapped with minimal usage of QKDs

RESEARCH RESULTS

Observation I: Lattice-Based Schemes for the Most Efficient Solution

- **Kyber**, a lattice-based KEM scheme that performs both encapsulation and decapsulation of keys in only 38μs
- For authentication, we considered schemes based on three primitives.
 - **Hash-based signatures:**
 - Highly Secure
 - Based on hash functions and Merkle tree
 - Very large parameter sizes
 - Slow signing
 - **Code-based signatures:**
 - Based on the Fiat-Shamir transform
 - Very large key sizes
 - Slow signing
 - **Lattice-based scheme:**
 - Smaller key sizes
 - Efficient sign and verification
 - Worst case to average case reduction

IMPACT ON STATE OF GRID SECURITY

- **Security against quantum computing capable adversaries**
 - The proposed system will offer confidentiality and authentication services for energy delivery systems against quantum computers.
- **Efficient and low cost key distribution**
 - The proposed system can be accommodated on low-end devices and sensors along with power stations.
- **Achieve high security with minimum infrastructure cost**
 - The new system can be deployed widely without requiring extensive use of physical post-quantum key distribution hardware, and can be bootstrapped by such hardware.

Post-quantum impact

- Open-source public key infrastructure
- Broad applicability to other domains with time-critical needs

COLLABORATION OPPORTUNITIES

- Collaboration and support from the industry can have the following impacts on this research:
 - The test and benchmark the system on simulated grids and testbeds to achieve full-fledge practicality assessment and deployment
 - Encourage the broader adoption of the system on IoT devices and systems that require long-term security

Contact: attila.yavuz@oregonstate.edu
- Activity webpage: https://cred-c.org/researchactivity/low-cost-scalable-and-practical-post-quantum-key-distribution

GOALS

- Authentication and integrity of control/measurement data is vital for the reliable operation of energy distribution systems.
- Post-Quantum (PQ) computers will render existing cryptographic systems insecure.
- Develop efficient PQ secure key exchange systems
 - Efficient: can be deployed in low-end PMUs
 - Cheap to deploy as compared with physically secure key distribution
 - No additional infrastructure needed

FUNDAMENTAL QUESTIONS/CHALLENGES

- Critical vulnerabilities for smart-grids:
 - False data injection attacks
 - Tampering commands
 - Cascade failures
- PQ secure key exchange is vital
 - Twenty nations are competing to win the quantum future
 - Conventional Crypto (e.g., RSA) will be broken!
- **Existing post-quantum secure methods are NOT enough**
 - Extremely Expensive: ≥ $70k per device
 - Require Fiber Optic Infrastructure: Very expensive to deploy/maintain nationwide

RESEARCH PLAN

- **Design and Implement an efficient Computationally secure post-quantum key distribution**
 - Security is based on computational problems
 - Need to store a few KB of keys on end machines
 - No need for additional hardware
 - No additional infrastructure is needed
 - Minimal maintenance cost
 - Deployable on low-end embedded devices
 - Can be bootstrapped with minimal usage of QKDs

RESEARCH RESULTS

Observation I: Lattice-Based Schemes for the Most Efficient Solution

- **Kyber**, a lattice-based KEM scheme that performs both encapsulation and decapsulation of keys in only 38μs
- For authentication, we considered schemes based on three primitives.
 - **Hash-based signatures:**
 - Highly Secure
 - Based on hash functions and Merkle tree
 - Very large parameter sizes
 - Slow signing
 - **Code-based signatures:**
 - Based on the Fiat-Shamir transform
 - Very large key sizes
 - Slow signing
 - **Lattice-based scheme:**
 - Smaller key sizes
 - Efficient sign and verification
 - Worst case to average case reduction

IMPACT ON STATE OF GRID SECURITY

- **Security against quantum computing capable adversaries**
 - The proposed system will offer confidentiality and authentication services for energy delivery systems against quantum computers.
- **Efficient and low cost key distribution**
 - The proposed system can be accommodated on low-end devices and sensors along with power stations.
- **Achieve high security with minimum infrastructure cost**
 - The new system can be deployed widely without requiring extensive use of physical post-quantum key distribution hardware, and can be bootstrapped by such hardware.

Post-quantum impact

- Open-source public key infrastructure
- Broad applicability to other domains with time-critical needs

COLLABORATION OPPORTUNITIES

- Collaboration and support from the industry can have the following impacts on this research:
 - The test and benchmark the system on simulated grids and testbeds to achieve full-fledge practicality assessment and deployment
 - Encourage the broader adoption of the system on IoT devices and systems that require long-term security

Contact: attila.yavuz@oregonstate.edu
- Activity webpage: https://cred-c.org/researchactivity/low-cost-scalable-and-practical-post-quantum-key-distribution
