

Low-cost, Scalable and Practical Post Quantum Key Distribution Infrastructure for EDS

Rouzbeh Behnia, Attila A. Yavuz, Oregon State University {behniar,attila.yavuz}@oregonstate.edu)

GOALS

- Authentication and integrity of control/measurement data is vital for the reliable operation of energy distribution systems.
- Post-Quantum (PQ) computers will render existing cryptographic systems insecure
- Develop efficient PQ secure key exchange systems
 - Efficient: can be deployed in low-end PMUs
 - Cheap to deploy as compared with physically secure key distribution
 - No additional infrastructure needed

FUNDAMENTAL QUESTIONS/CHALLENGES

- Critical vulnerabilities for smart-grids:
 - False data injection attacks
 - Tampering commands
 - Cascade failures

- Twenty nations are competing to win the quantum future
- Conventional Crypto (e.g., RSA) will be broken!

- + Security is based on fundamental laws in physics
- + Unconditionally secure against eavesdroppers
- Expensive devices on each end
- Range < 100 KM

Maintenance cost

- Need of costly infrastructure
- Not deployable on peripheral devices

RESEARCH PLAN

 Design and Implement an efficient Computationally secure postquantum key distribution

- Security is based on computational problems
- Need to store a few Kb of keys on end machines
- + No need for additional hardware
- + No additional infrastructure is needed
- + Minimal maintenance cost
- + Deployable on low-end embedded devices
- + Can be bootstrapped with minimal usage of QKDs

Thrust I – Phase 1:

Goal:

Identify Efficient CQKD Schemes

Thrust I – Phase 2:

Goal:

Develop the selected CQKDs Evaluate parameters & Security

Thrust II – Phase 1:

Goal:

Optimize the realization of CQKDs Harness efficient libraries

Employ commodity hardware (e.g., GPU)

Goal:

Bootstrap CQKD with minimal usage of QKD

Thrust III

Goal:

Implement on embedded systems

RESEARCH RESULTS

Observation I: Lattice-Based Schemes for the Most Efficient Solution

- **Kyber**, a lattice-based KEM scheme that performs both encapsulation and decapsulation of keys in only $38\mu s$
- For authentication, we considered schemes based on three primitives.

Hash-based signatures:

- Highly Secure
- Based on hash functions and Merkel tree
- Very large parameter sizes
- Slow signing
- Code-based signatures:
 - Based on the Fiat-Shamir transform
 - Very large key sizes
 - Slow signing
- Lattice-based scheme:
 - Smaller key sizes
 - Efficient sign and verification
 - Worst case to average case reduction

Observation II: Bootstrapping with highly secure key distribution devices (QKD) at the main command centers is possible to boost the security

IMPACT ON STATE OF GRID SECURITY

- Security against quantum computing capable adversaries
- The proposed system will offer confidentiality and authentication services for energy delivery systems against quantum computers.
- Efficient and low cost key distribution
- The proposed system can be accommodated on low-end devices and sensors along with power stations.
- Achieve high security with minimum infrastructure cost
- The new system can be deployed widely without requiring extensive use of physical post-quantum key distribution hardware, and can be bootstrapped by such hardware.

BROADER IMPACT

Post-quantum public key infrastructure

Open-source cryptographic framework

Broad applicability to other domains with time-critical needs

COLLABORATION OPPORTUNITIES

- Collaboration and support from the industry can have the following impacts on this research:
 - The test and benchmark the system on simulated grids and testbeds to achieve full-fledge practicality assessment and deployment
 - Encourage the broader adoption of the system on IoT devices and systems that require long-term security

Contact: <u>attila.yavuz@oregonstate.edu</u>

Activity webpage: https://cred-c.org/researchactivity/low-cost-scalable-and-practical-post-quantum-key-distribution