

Resilient and Scalable Data Collection in Energy Distribution Networks

Tianyuan Liu, King-Shan Lui, and Klara Nahrstedt

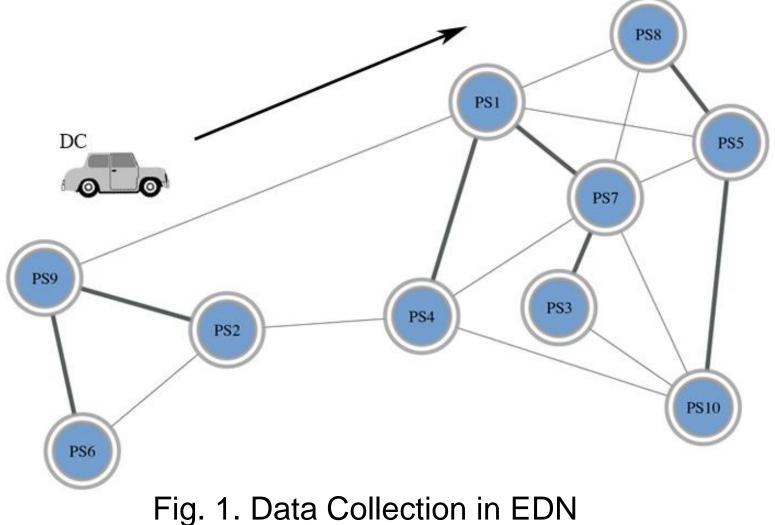
MOTIVATION

- Failures in energy distribution networks (EDN) can cause enormous damage but are difficult to monitor.
- Although sensors are deployed along the pipelines for safety purposes, these sensors are vulnerable to incidents, natural events, or malicious attacks.
- Mechanisms to detect or tolerate sensor failures in EDN are desirable.

PROBLEM DESCRIPTION

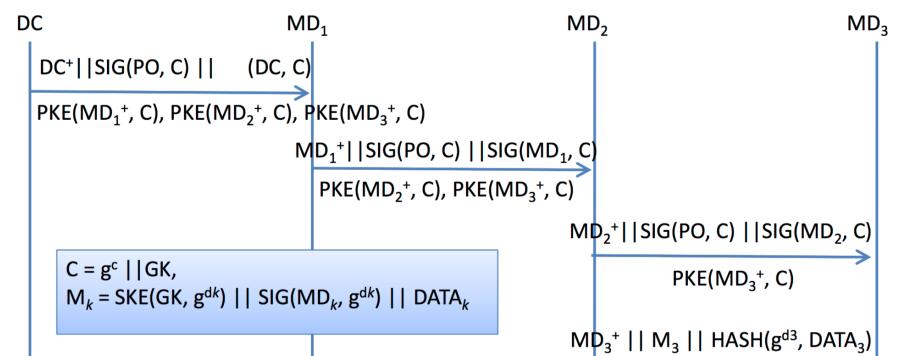
- Our goal is to design a data collection protocol in EDN that is:
 - fast and scalable;
 - resilient, in that it guarantees data availability at a sensor as long as the sensor does not fail; and
 - secure, such that it (1) prevents eavesdropping of data, and (2) ensures integrity of data.
- We consider the following scenario in our protocol:
 - An "honest-but-curious" mobile data collector (DC) collects data from pipeline sensors (PSs), and eventually delivers data to a pipeline manager (PM).

RESEARCH PLAN


- Formulate resilient data collection as a tree-based disjoint-path backup integer optimization problem, referred to as the *Resilient Tree Collection (RTC)* problem.
- Provide an algorithm to solve the optimization problem.
- Design a protocol to achieve secure and scalable data collection with/without failure.
- Evaluate the performance of the data collection scheme on real-world dataset.

RESILIENT TREE COLLECTION (RTC)

Notation


	Notation	Description
	$\overline{G = \langle \mathcal{R}, \mathcal{S}, \mathcal{E} \rangle}$	G -directed graph, \mathcal{R} -set of candidate roots,
Constants		\mathcal{S} -set of PSs, \mathcal{E} -set of links
	$c_{i,j}$	Energy consumption of transmitting 1 bit
		through link (i, j) .
	$p_{i,j}$	Probability that link (i, j) fails.
	N_{th}	Maximum number of nodes that can share a
		group key.
Variables	$x_{i,j}^s$	= 1 if link (i, j) is in the primary path of PS
		s; = 0 otherwise.
	$y_{i,j}^s$	= 1 if link (i, j) is in the backup path of PS
		s; = 0 otherwise.

- Sensors can fail in any stage of the protocol.

RELATED APPROACHES

- Secure tree-based data collection protocol in the smart grid [1].
- Scenario: in smart grid, data collector (DC) collects data from measurement devices (MD) and delivers to power operator (PO).

Formulation

$$\begin{split} \min \sum_{j \in \mathcal{R}} \sum_{m \in \mathcal{S}} \left(p^s x_{i,j}^s + (1 - p^s) y_{i,j}^s \right) c_{i,j}, \\ \text{s.t.} \ \sum_{i \in \mathcal{S}} x_{i,n}^s - \sum_{i \in \mathcal{S} \cup \mathcal{R}} x_{n,i}^s = \begin{cases} -1 & \text{if } n = s \\ 0 & \text{if } n \neq s \end{cases}, \forall s \in \mathcal{S}, \forall n \in \mathcal{S}, \\ 0 & \text{if } n \neq s \end{cases}, \\ \sum_{n \in \mathcal{R}} \sum_{i \in \mathcal{S}} x_{i,n}^s = 1, \forall s \in \mathcal{S}, \\ x_{i,j}^s + y_{i,j}^s \leq 1, \forall s \in \mathcal{S}, \forall (i,j) \in \mathcal{E}, \\ x_{i,j}^s \leq x_{i,j}^i, \forall s \in \mathcal{S}, \forall (i,j) \in \mathcal{E}, \\ \sum_{i,s \in \mathcal{S}} x_{i,j}^s + y_{i,j}^s \leq N_{th}, \forall j \in \mathcal{R} \end{cases} \end{split}$$

where $p^{s} = \prod_{(i,j) \in \mathcal{E}} (1 - p_{i,j}^{s} x_{i,j}).$

ALGORITHM

• Solve RTC (NP-hard) by rounding relaxation linear programming.

Algorithm 1: Rounding Relaxation for RTC Input: $G, \{c_{i,j}\}, \{p_{i,j}\}, N_{th}$ Output: $\{x_{i,j}^m\}, \{y_{i,j}^m\}$

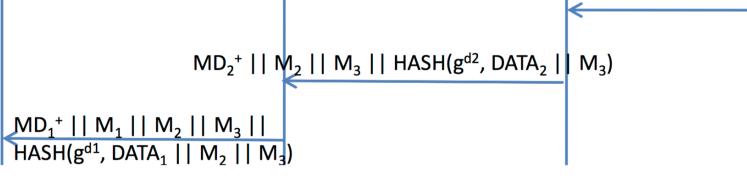


Fig. 2. Data Collection on a Tree Branch

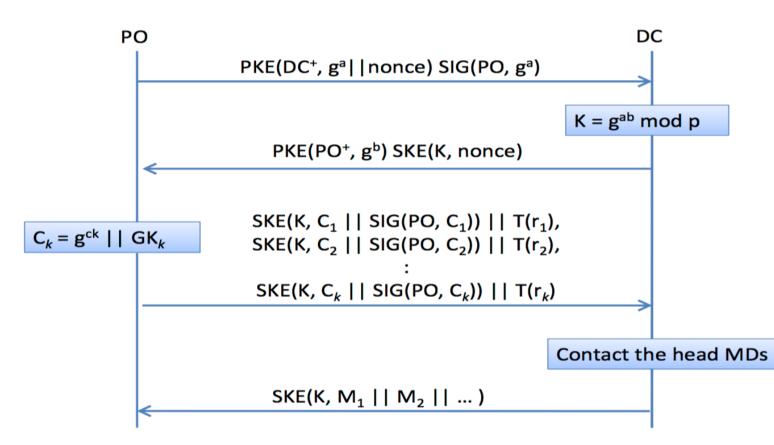


Fig. 3. Communication Between PO and DC

[1] Haiming Jin, et al. "Secure data collection in constrained tree-based smart grid environments." *Proc. 2014 IEEE International Conference on Smart Grid Communications (SmartGridComm)*. IEEE, 2014.

```
\begin{array}{c|c|c|c|c|c|c|c|c|} & \mathbf{i} \text{ while } true \ \mathbf{do} \\ & \mathbf{2} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &
```

FUTURE EFFORTS

- Design protocol to achieve secure and scalable data collection under failure.
- Evaluate the performance of proposed scheme on real-world dataset.
- Consider dynamic scheduling under failure.

CYBER RESILIENT ENERGY DELIVERY CONSORTIUM | CRED-C.ORG FUNDING SUPPORT PROVIDED BY THE DEPARTMENT OF ENERGY, OFFICE OF ELECTRICITY DELIVERY & ENERGY RELIABILITY