REDC

Robust and Secure GPS-based Timing for Power Systems Algorithm and Validation of GPS-based Direct Timing Estimation for PMUs

Sriramya Bhamidipati, Yuting Ng and Grace Xingxin Gao

GOALS

- Develop a trustworthy GNSS-based timing source that is more jamming and spoofing-resilient than current GPS-based clocks.
- Investigate possible detection and mitigation schemes to harden PMUs against jamming, spoofing and receiver errors.
- Develop a hardware-based test-bed capable of investigating the resiliency of various PMUs to GPS jamming and spoofing attacks.

BACKGROUND ON GPS-BASED TIME TRANSFER

- GPS provides free accurate and precise time and frequency sources for power systems applications.
 - Time accuracy ~100*ns*, Frequency accuracy ~1 $x10^{-12}$ Hz.
- Civil GPS signals are susceptible to malicious attacks.
 - Civil GPS signals are weak and unencrypted, with their structures explicitly described in publicly available documents.
 - An attacker can broadcast counterfeit civil GPS signals and manipulate victim receivers' time and time drift solutions.
- Civil GPS-based timing equipment are not sufficiently robust to jamming, spoofing attacks and receiver errors.
 - Errors of up to 13 microseconds were observed for several hours

VALIDATION OF GPS-BASED TIMING FOR PMU

- Experimental validation of our robust GPS-based timing on PMUs involves two threads:
 - The GPS signals are given as input to the commercial clocks which supply IRIG-B timing signals to virtual PMUs in RTDS setup.
 - Our GPS algorithm driven clock takes the GPS signals to generate timing signals which are supplied to the hardware PMU connected to the RTDS setup.
- Synchronization of the threads is done using an external clock (Chip Scale Atomic Clock) and MIMO cable.

- during a GPS glitch on January 26 2016.
- According to IEEE-C37.118.1, without other errors, maximum allowable phase angle error is 0.573° (~timing error of 26.5 µs).

OUR ROBUST GPS ALGORITHMS

- Traditional GPS-based time transfer is a two-step process:
 - Acquire and track GPS signals per satellite individually to generate respective pseudorange and carrier phase.
 - Perform least-squares to obtain PVT solution from which UTC time is computed.
- The robust GPS algorithms developed in our lab:
 - No intermediate pseudorange measurements need to be estimated.
 - Leverage the static nature of the power grids to pre-determine 3D position an velocity of GPS receiver.
 - Works directly with timing parameters. Reduction in unknowns to be estimated from 8 (x, y, z, $c\delta t$, \dot{x} , \dot{y} , \dot{z} , $c\delta \dot{t}$) to 2 ($c\delta t$, $c\delta \dot{t}$).

Direct Time Estimation (DTE):

Direct time estimation is a novel signal processing technique that evaluates a pre-generated set of clock candidates using the principle of maximum likelihood estimation.

RESEARCH RESULTS

• Under 25dB of added Jamming above noise floor, the commercial clock lost track while our Direct Time Estimation driven clock is robust.

• Under Spoofing attack which broadcasts a meaconed signal of delay $100\mu s$ and 20db higher power, the commercial clock locks on spurious signal while Direct Time Estimation tracks the authentic signal.

• This algorithm computes non-coherent summation across satellites which improves the signal-to-noise ratio of the system.

Multi-Receiver Direct Time Estimation (MRDTE):

- An extension of DTE known as Multi-Receiver Direct Time Estimation (MRDTE) is developed to incorporate multiple receivers.
 - Geographical diversity of multiple receivers is taken into account so as to further improve the robustness against timing attacks.
 - All the receivers are triggered by a common external clock.

CONCLUSION

- Our GPS algorithms utilize the entire information in the raw signal whereas the traditional methods discard the remaining information in raw signal after determining intermediate measurements.
- Experimental tests validate the increased robustness of our GPS algorithms against jamming, spoofing and receiver errors as compared to traditional GPS processing methods.

CYBER RESILIENT ENERGY DELIVERY CONSORTIUM | CRED-C.ORG FUNDING SUPPORT PROVIDED BY THE U.S. DEPARTMENT OF ENERGY AND THE U.S. DEPARTMENT OF HOMELAND SECURITY