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Many large infrastructure networks are COUPLED with power networks! EXISTENCE OF NASH EQUILIBRIUM & UNIQUENESS

» For the special case of EV network, the multi-retailer problem is a
special case of the competition game in network routing.
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- (Goal: to investigate the way coupled infrastructure can address the issue of FINDING THE NE VIA BI-LEVEL OPTIMIZATION
resilience in concert

« We start by studying congestion and possible wide area oscillations

« Aim: find optimal pricing for IPSO that leads to a Nash Equilibrium.

— In an ideal world: Maximum Social Surplus solution (or Social Optimum I;llg} 1'c(g)
(SO)) finds the optimum settings across the infrastructures (most secure) st. g>0, p=HTp+~1,
— Can the systems operate and recover separately and still be secure? v:1'(d+£—-g)=0, p:HA+£—g) <m,

d= MZT‘ER AT?

VreR:A"=arg min JAA";A"";p). Bi-level optimization
ATEFT problem

MAX. SOCIAL SURPLUS SOLUTION w/ COUPLED OPTIMIZATION

e |Leader-Follower structure --- leader: IPSO, follower: retailers

o UtOpia-Iike, when the infrastructure and IPSO are fU”y Cooperating. e The bi-level pr0b|em can be solved as a mixed integer program.
min Jpower(g) + Ji (A) IPSO solves economic dispatch, with « Invokes convex approximation to handle the non-convex constraints.
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Gas Pipeline Network GAS PIPELINE SYSTEM COUPLED WITH POWER SYSTEM

. Decision variablﬁd, «, P, ¢)
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MULTIPLE INERASTRUCTURE OPERATORS * Prior study® showed that when the Max Social Surplus problem was

solved separately, then system instability may occur.

* We anticipate that the situation can be exacerbated with competitive
gas retailers. =» Security issue!

« Assume multiple retailers operating the infrastructure.
« The retailers individually choose their flow on the same network.

A" = arg min J(X’a; A7 p)

AreFr Retailer r has only control of its

virtual flow and has its private
demand to satisfy.

* Gas network: do NE points exist?
« Looking at attacks to control system for pipelines or grid that can
SECURITY CONCERNS: induce dynamic resonance for pipelines
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