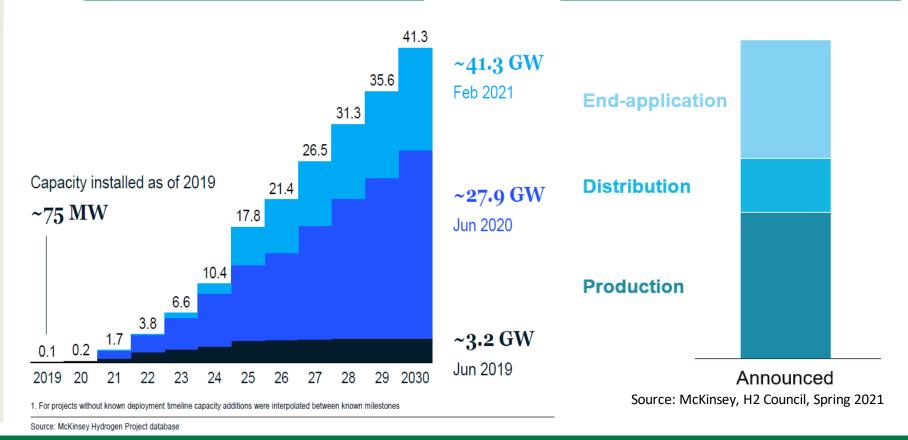



## **U.S.** Department of Energy Hydrogen Update

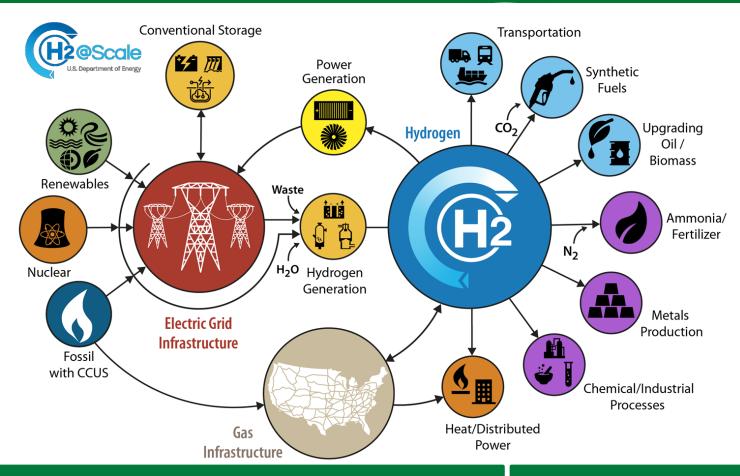
Dr. Sunita Satyapal, Director, U.S. Department of Energy Hydrogen and Fuel Cell Technologies Office

July 1, 2021




## Recent Increased Interest in Hydrogen: Global Drivers

- ✓ Low-cost renewables are now available
- ✓ Countries see clean H₂ can help meet climate goals
  - Hard to decarbonize sectors
  - Energy storage
  - Import/export opportunities




\$80B Global Government Funding. 6X More with Private Sector through 2025



Studies show potential for 10 to 25% global GHG reduction using clean hydrogen. \$2.5T Revenue. 30M Jobs.

## H2@Scale Opportunities: Deep Decarbonization, Economic Growth, Jobs



#### **Potential**

- 10 MMT of H<sub>2</sub>/yr produced today with scenarios for ~5X growth
- 10 MMT H<sub>2</sub> would ~ double today's solar or wind deployment
- Industry study shows potential for \$140B in revenue, 700K jobs, 16%
   GHG reduction. Analysis underway, including on export potential.

#### **Contributes to Administration Goals including:**

- 100% carbon-pollution-free electric sector by 2035
- Net zero emissions economy by 2050

Priorities: Ensure benefits to all Americans, focus on jobs, EJ40: 40% of benefits in disadvantaged communities

## **HFTO Comprehensive Strategy**

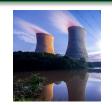
Focused Consortia with labs, industry, universities

New: \$100M/5yrs

Core Team: R&D **HydroGEN National Labs** MARC (S) **ElectroCat University & National** Industry Non-Profit Lab

2020 2016 2018

D&D







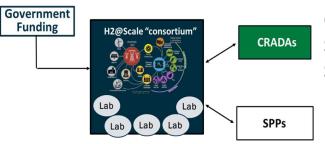







New: Super Truck **FOA** and

Nuclear to H<sub>2</sub> more... Ammonia (ARPA-E)


Trucks, GSE

Funding

Infrastructure

Renewables to H<sub>2</sub> Data Center

**Enablers** 



Comprehensive analysis, tools and models to accelerate progress Safety, codes, standards, workforce development Systems integration and validation







Key 2030 Targets

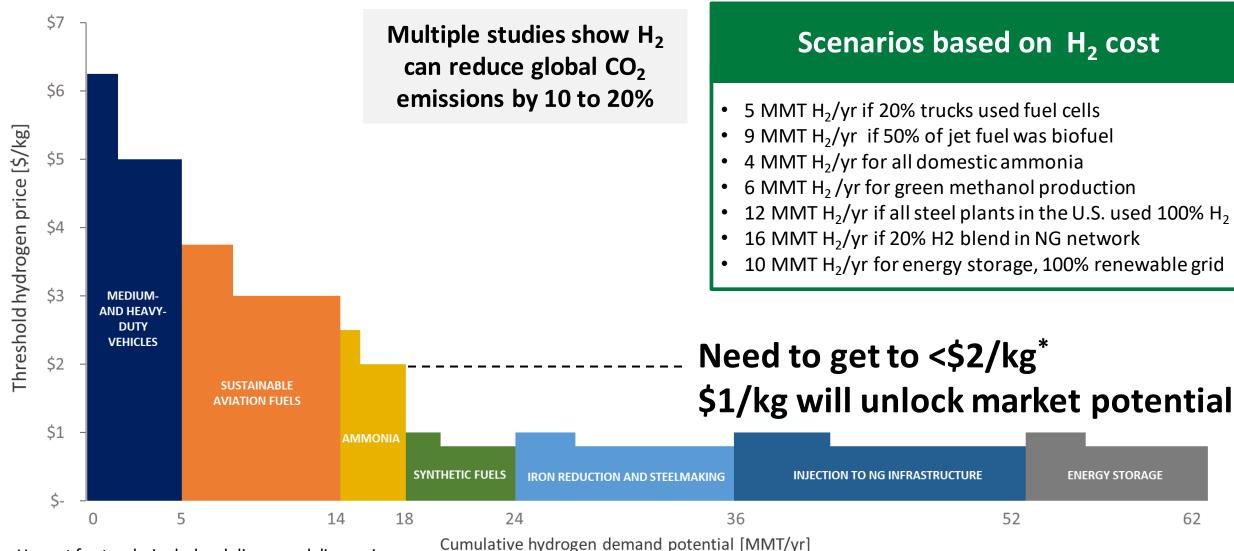
**Clean Hydrogen** 

- \$1/kg production
- \$2/kg delivery
- \$9/kWh storage

**Electrolyzers** 

- \$150/kW
- 73% efficiency
- 80Khr durability

**Fuel Cells** 


- \$80/kW
- 25Khr durability

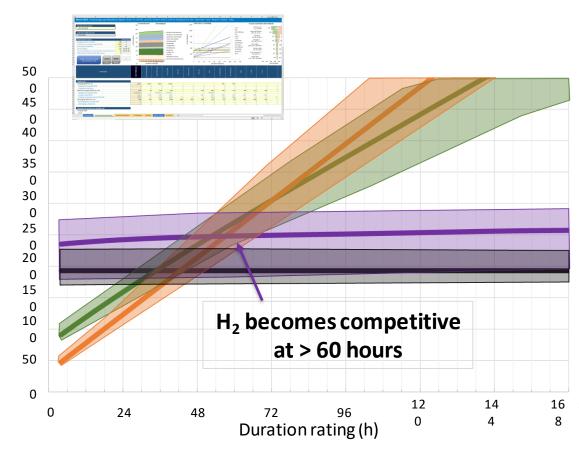
**Enable EJ40 Priorities, DEI** 

Deployment in collaboration with Loan Program Office

Examples shown, not exhaustive. Over 190 companies, 109 universities, 16 national labs in the last decade; CRADAs are Cooperative Research And Development Agreements

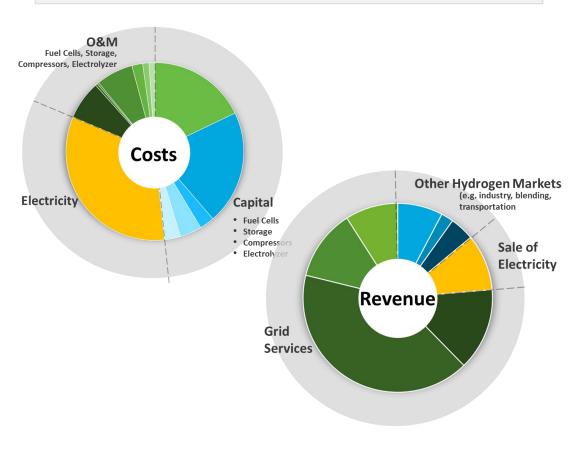
## **Analysis Determines Market Potential Scenarios**




H<sub>2</sub> cost for trucks includes delivery and dispensing

Results based on preliminary analysis

<sup>\*</sup>H<sub>2</sub> could compete at \$1 to \$2/kg higher cost with a carbon price


## **New Tools Developed: Long Duration Energy Storage & Value Proposition Tool**

## Newly released StoreFAST model assesses cost of long duration energy storage



Available at: <a href="https://www.nrel.gov/storage/storefast.html">https://www.nrel.gov/storage/storefast.html</a> (NREL)

New tool to assess cost and revenue potential of grid-integrated hydrogen energy storage systems



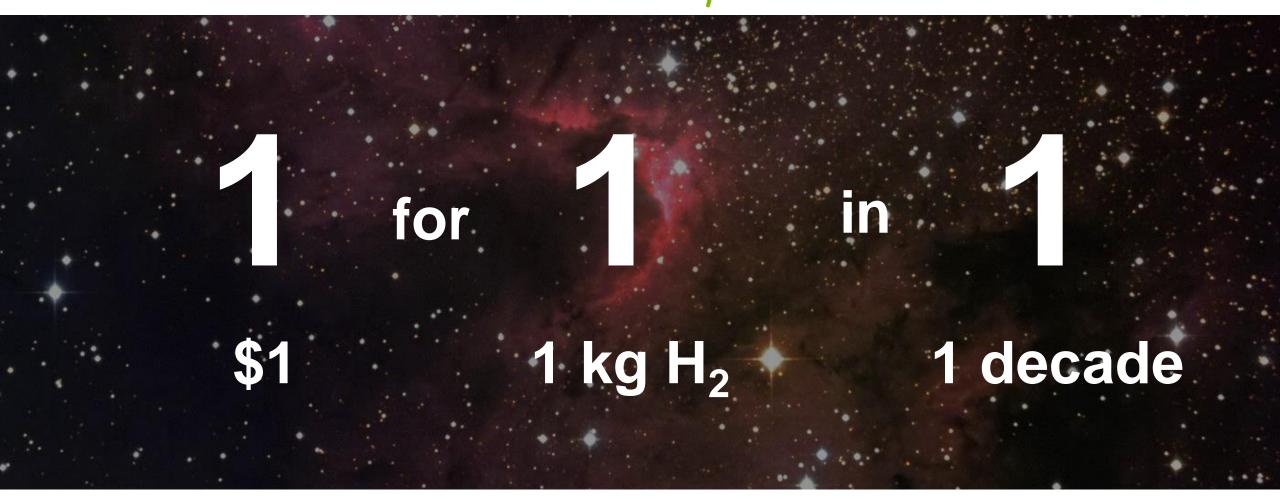
Co-funded by HFTO and OE, now in beta testing at: <a href="https://eset.pnnl.gov">https://eset.pnnl.gov</a> (PNNL)



## **President Biden and Energy Secretary Granholm at Climate Summit**








Launch of Hydrogen Energy Earthshot
First of the Energy Earthshots
June 7, 2021
at DOE Hydrogen Program Annual Merit Review

Secretary Jennifer Granholm
June 7, 2021

April 23, 2021



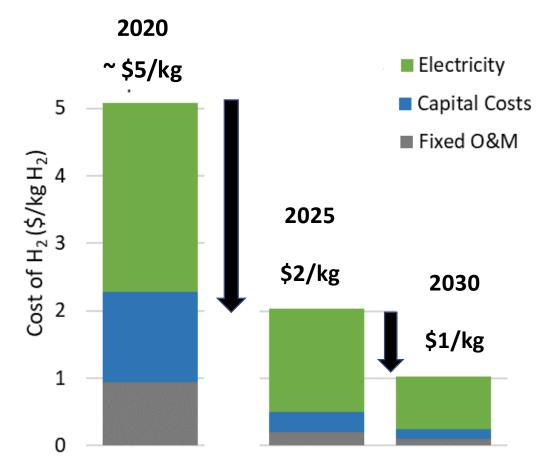


Request for Information on hydrogen demonstrations to support the Hydrogen Shot: www.energy.gov/eere/fuelcells/hydrogen-and-fuel-cell-technologies-office-funding-opportunities



## 

## One of several pathways


Hydrogen

- Reduce electricity cost from >\$50/MWh to
  - \$30/MWh (2025), \$20/MWh (2030)
- Reduce capital cost >80%
- Reduce operating & maintenance cost >90%

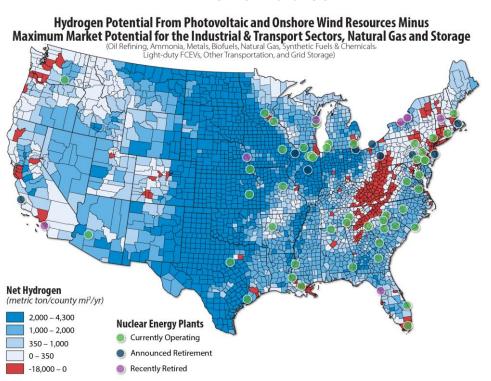
All pathways for clean hydrogen included: Thermal conversion (fossil/waste + CCS), advanced water splitting, biological approaches, etc.

Emphasis: Getting to Scale

#### **Example: Cost of Clean H<sub>2</sub> from Electrolysis**

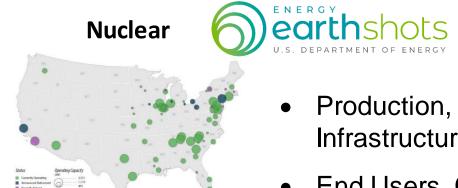









Request for Information (RFI) released – Due


**July 7, 2021** 

#### Renewables



Red: Regions where projected industrial & transportation demand exceeds local supply.

Hydrogen Shot Summit and Stakeholder **Engagement Planned** 



#### **Natural Gas (SMR)**



#### **CCS**





Hydrogen

- End Users, Cost, Value **Proposition**
- Co-location potential
- **Emissions Reduction** Potential
- DEI, Jobs, EJ
- Science & Innovation Needs and Challenges

DEI: Diversity, Equity and Inclusion EJ: Environmental Justice





# Hydrogen Shot Stakeholder Engagement and Next Steps

#### **Stakeholder Engagement Planned**

Industry, National Labs, Universities,
Regional Coalitions, Labor Groups,
Associations, Supply Chains,
Federal and State Agencies,
SBIRs/STTRs, Technology
Commercialization Fund, Investors,
International, Codes & Standards,
Workforce Development and EJ
Communities, and more

## **Timeline**

- Announce Hydrogen Shot and RFI
   June 7
- RFI Responses Due July 7
- Office of Science Round Table- August
- Hydrogen Shot Summit
- Regional Analysis Preliminary Results Fall
- Follow on Event Oct 8: Hydrogen and Fuel Cell Day
- Stay tuned for more details

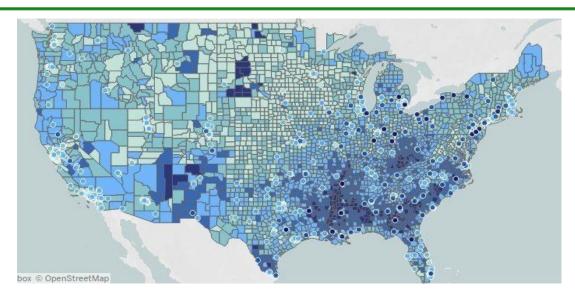
hydrogen.energy.gov







## Save the Date


## The Hydrogen Shot Summit – Aug. 31 to Sept. 1

- Two-day summit bringing together stakeholders from industry, research, academia and government to identify pathways to meet the Hydrogen Shot in the next decade
- Technical breakout sessions to cover multiple hydrogen production pathways and other topics including:
  - Electrolysis
  - Thermal conversion with CCS
  - Advanced pathways
  - Deployment and financing
- More info available coming soon at www.energy.gov/eere/fuelcells/hydrogen-shot



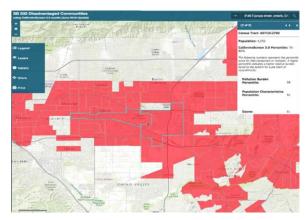
# Collaboration Diversity, Equity, Inclusion

## Focus on Benefits in Underserved & Disadvantaged Communities



New index ranks America's 100 most disadvantaged communities

| University of Michigan News (umich.edu)


Funding Opportunities will encourage broader engagement, demonstrating benefits, including DEI (minorities, gender equity, etc.)

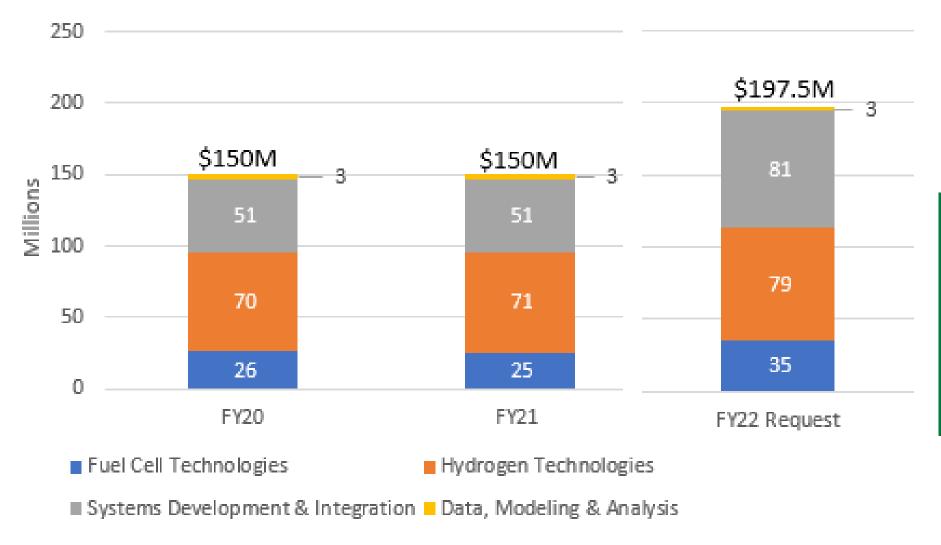
- HFTO, NNSA, LANL Collaboration to engage with HBCU Students
- Bob Rose Fellowship\* established 2019, in partnership with UT-ORNL Workforce Development Program. Contact: ORI@tennessee.edu

\*in honor of Bob Rose, founder of US Fuel Cell Council

#### **Example: HFTO project with CTE for UPS Fuel Cell Delivery Vans**





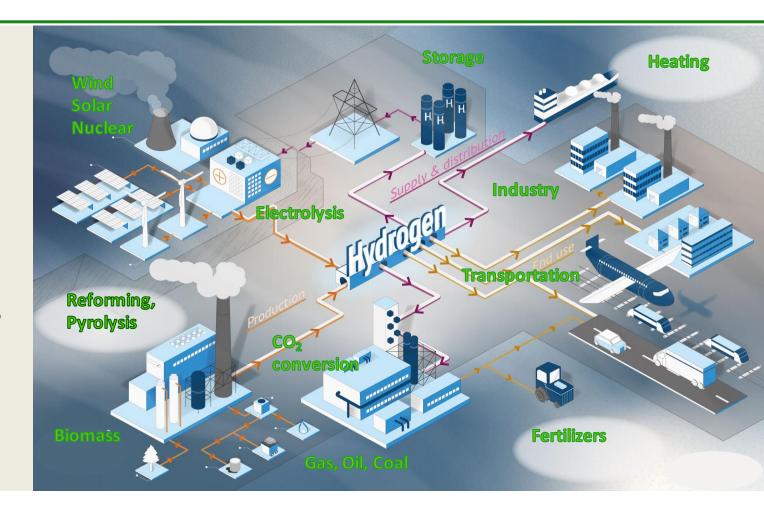

Trucks will be demonstrated in Ontario, CA- disadvantaged community

<u>Goal</u>: Demonstrate 15 fuel cell trucks (up to 125-mile range)

**Project impact per year: Savings of** 

- 285 metric tons of CO<sub>2e</sub>
- 280,000 grams of criteria pollutants
- 56,000 gallons of diesel

## Funding for Hydrogen and Fuel Cell Technologies Office




FY22 HFTO Request: \$197.5M

HFTO has funded over 190 companies, 109 universities, and 16 National Labs across 40 States over the last decade

## **Summary: Strategy and Next Steps**

- 1) Accelerate R&D to reduce cost
- 2) De-risk demonstration and enable deployments
- 3) Strategic scale up
  - Clusters: co-locate supply and demand (e.g., at ports) and enable infrastructure
  - RFI feedback and regional analysis will guide activities



Identify jobs, EJ, and workforce development opportunities (e.g., transition from fossil fuel to H<sub>2</sub>, ports, etc.)

# Thank You

#### **Sunita Satyapal**

Director Sunita.Satyapal@ee.doe.gov



for next year's AMR

June 6 to 9, 2022

We hope in person!

Looking for more info?

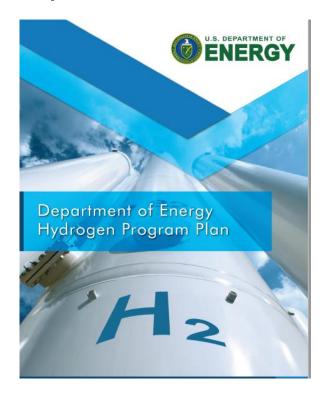
#H2IQ



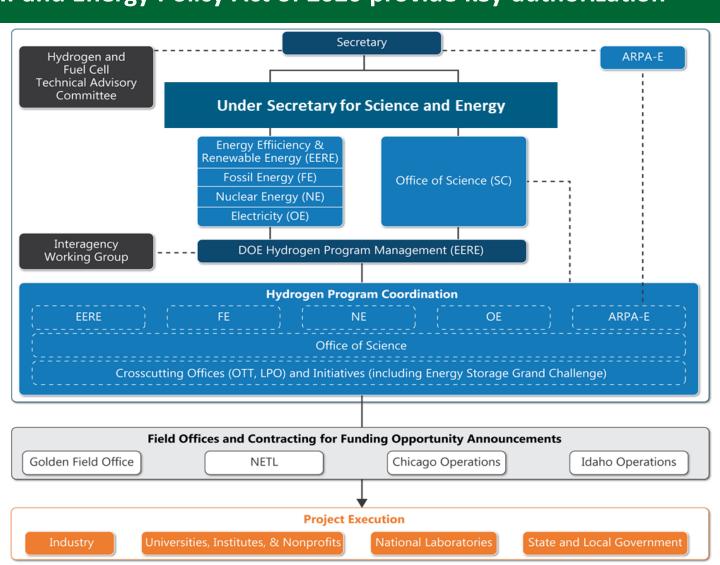
www.energy.gov/fuelcells www.hydrogen.energy.gov

# **Additional Information**

www.energy.gov/fuelcells www.hydrogen.energy.gov


## **Acknowledgements: Recent HFTO Funded Recipients**

3M Mercedes-Benz Sandia National Laboratories **Rutgers University Automated Dynamics** National Institute of Standards and Technology Savannah River National Lab The University of Alabama Advent Technologies, Inc. **Ohio Fuel Cell Coalition** SLAC National Accelerator Lab The University of Toledo Air Products and Chemicals Pajarito Powder U.S. Naval Research Lab University of Delaware Army Corps of Engineers Redox Power Systems, LLC Arizona State University University of Hawaii Caterpillar, Inc. Proton Energy Systems Inc California Institute of Technology University of Illinois at Urbana-Champaign Chemours Company FC, LLC Saint-Gobain Ceramics and Plastics, Inc. Carnegie Mellon University Center for Transportation and the Environment Skyre, Inc. University of Kansas Collaborative Composite Solutions Corporation Southwest Research Institute Clemson University University of Kentucky Cummins, Inc. Strategic Analysis Inc. Colorado School of Mines University of Oregon C-Zero, LLC **Treadstone Drexel University** University of South Carolina DOT National Highway Traffic Safety Administration United Technologies Research Center Georgia Institute of Technology University of Southern California Electricore Inc. **Lubrizol Corporation** Indiana University Purdue University Indianapolis Electric Power Research Institute, Inc. Liox Power. Inc. University of California, Irvine James Madison University **Exelon Corporation** Hy-Performance Materials Testing, LLC University of California, San Diego **Leland Stanford Junior University FedEx** NASA University of Colorado Massachusetts Institute of Technology **Ford** Nikola Motor Company **University of Connecticut** Frontier Energy, Inc. Ames Lab Missouri University of Science & Technology University of Tennessee Space Institute FuelCell Energy, Inc. **Argonne National Lab** Montana State University Gas Technology Institute Brookhaven National Lab University of Texas at Austin Northeastern University **General Motors** Idaho National Lab University of Virginia Oak Ridge Associated Universities Giner ELX / Plug Power Lawrence Livermore National Lab **Vanderbilt University** Oak Ridge Institute for Science & Education **GLWN** Los Alamos National Lab University of Tennessee-Knoxville Oregon State University Greenway Energy, LLC National Energy Technology Lab Washington State University Hexagon R & D LLC National Renewable Energy Lab Penn State University **Hornblower Yachts** West Virginia University Oak Ridge National Lab **University of Michigan** Ivys, Inc. Pacific Northwest National Lab **Rice University** Washington U (IIT)


## The U.S. DOE Hydrogen Program Released November 2020

#### The Energy Policy Act (2005) Title VIII and Energy Policy Act of 2020 provide key authorization

Hydrogen is one part of a broad portfolio of activities



www.hydrogen.energy.gov



## Comprehensive Strategy Across the Hydrogen Value Chain

| NEAR-TERM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | VI                                                                                                                                                                                                                                                                                                                                                                                                     | LONGER-TERM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Advanced fossil and biomass reforming                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | g/conversion Advanced biological/m                                                                                                                                                                                                                                                                                                                                                                     | nicrobial conversion<br>o/photoelectro-chemical H <sub>2</sub> O splitting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Distribution from on-site production from on-site prod |                                                                                                                                                                                                                                                                                                                                                                                                        | ipeline transmission and distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Pressurized tanks (gaseous H <sub>2</sub> )<br>Cryogenic vessels (liquid H <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Geologic H <sub>2</sub> storage (e.g., caverns, deplete<br>Cryo-compressed<br>Chemical H <sub>2</sub> carriers                                                                                                                                                                                                                                                                                         | ed oil/gas reservoirs)<br>Materials-based H <sub>2</sub> storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Turbine combustion<br>Fuel cells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Advanced combustion Next generation fuel cells                                                                                                                                                                                                                                                                                                                                                         | Fuel cell/combustion hybrids<br>Reversible fuel cells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Fuel refining Space applications Portable power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Blending in natural gas pipelines Distributed stationary power Transportation Distributed CHP Industrial and chemical processes Defense, security, and logistics applications                                                                                                                                                                                                                          | Utility systems<br>Integrated energy systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Gasification of coal, biomass, and wast Advanced fossil and biomass reforming Electrolysis (low-temperature, high-ter  Distribution from on-site production Tube trailers (gaseous H <sub>2</sub> ) Cryogenic trucks (liquid H <sub>2</sub> )  Pressurized tanks (gaseous H <sub>2</sub> ) Cryogenic vessels (liquid H <sub>2</sub> )  Turbine combustion Fuel cells  Fuel refining Space applications | Gasification of coal, biomass, and waste with carbon capture, utilization, and storage Advanced fossil and biomass reforming/conversion Electrolysis (low-temperature, high-temperature)  Distribution from on-site production Tube trailers (gaseous H <sub>2</sub> )  Cryogenic trucks (liquid H <sub>2</sub> )  Pressurized tanks (gaseous H <sub>2</sub> )  Cryogenic vessels (liquid H <sub>2</sub> )  Geologic H <sub>2</sub> storage (e.g., caverns, deplete Cryogenic vessels (liquid H <sub>2</sub> )  Cryo-compressed Chemical H <sub>2</sub> carriers  Turbine combustion  Fuel cells  Advanced combustion Fuel refining  Blending in natural gas pipelines Space applications  Distributed stationary power  Transportation  Distributed CHP Industrial and chemical processes |

## **DOE Hydrogen Program – Collaboration**

#### **EERE Hydrogen**

#### Feedstocks:

· Renewables and Water

#### **Technologies:**

- Electrolysis—Low- and High-Temperature
- Advanced Water Splitting—Solar/High-Temp Thermochemical, Photoelectrochemical
- Biological Approaches

#### FE Hydrogen

#### Feedstocks:

 Fossil Fuels—Coal\*and Natural Gas \*Waste coal, other waste

- Gasification, Reforming, Pyrolysis
- Advanced Approaches—Co-firing and **Modular Systems**
- Natural Gas to Solid Carbon plus Hydrogen

#### **Areas of Collaboration**

Reversible Fuel Cells, Biomass, Municipal Solid Waste, Plastics Polygeneration including Co-Gasification with Biomass High-Temperature Electrolysis, System Integration

#### Feedstocks:

Nuclear Fuels and Water

#### **Technologies:**

- Risk Assessment & Licensing, Thermal Delivery
- Advanced Nuclear Reactors
- System Integration and Controls LWRs and **Advanced Reactors**

#### **NE Hydrogen**

#### Crosscutting R&D Offices: Office of Science (SC) and ARPA-E

Fundamental Science and Advanced Innovative Concepts

Foundational research and innovation; user facilities and tools, materials and chemical processes (e.g., catalysis, separations), artificial intelligence/machine learning, databases and validation, high risk-high impact R&D, and other crosscutting activities

EERE: Office of Energy Efficiency and Renewable

Energy

FE: Office of Fossil Energy NE: Office of Nuclear Energy

## Hot Off the Press: CRADA Call Released June 7, 2021

## Total Funding: up to \$12M over 3 years\*

- \$500k \$2M per project, dependent on topic area
- Up to 14 projects total
- 30% cost share including 10% cash in
- National Lab leads w/ partners from industry, state & local govt, universities, and more

## **Topics**

- 1) Integrated Hydrogen Energy System Testing & Validation
- 2) Applied Risk Assessment and Modeling for H2@Scale Applications
- 3) Next-Generation Sensor Technologies

## Proposals due July 19, 2021

CRADAs are Cooperative Research And Development Agreements

\*Pending Appropriations

www.nrel.gov/hydrogen/h2-at-scale-crada-call.html

## **HyBlend and H-Mat Consortia – Opportunities Available**

To assess and enhance compatibility of key materials with hydrogen, and to accelerate the use of hydrogen in multiple applications (including in natural gas blending)



National lab consortium to assess and improve performance and reliability of materials in hydrogen, reduce costs, and inform codes & standards.



Pipeline materials compatibility R&D, technoeconomic analysis, and life cycle analysis to assess the feasibility of hydrogen blending in the US natural gas pipeline infrastructure.

#### **Over 40 partners**

Materials R&D aims to lower cost of components in H<sub>2</sub> infrastructure and enhance life by 50%

Online data portal shares information with **R&D** community worldwide, and international MOUs enable coordination

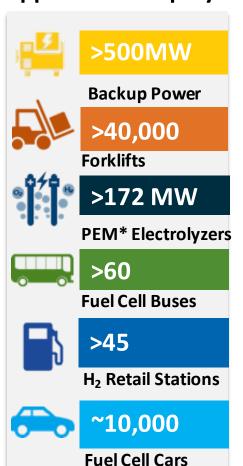
The U.S. has ~3 million miles of natural gas pipeline, and is projected to consume 36 quads of natural gas/year by 2050

Blending 20% H<sub>2</sub> by 2050 would enable doubling of current renewable consumption









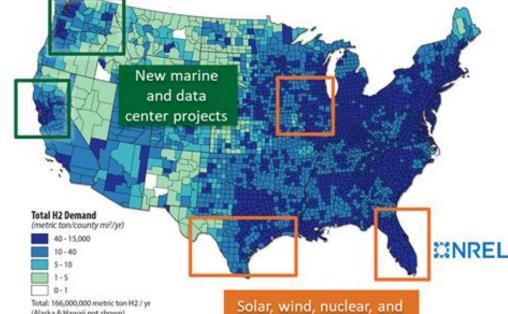





## Snapshot of Hydrogen and Fuel Cell Applications in the U.S.

## **Examples of Applications Deployed**




\*Polymer electrolyte membrane

#### Major Hydrogen Production Sites



- 10 million metric tons produced annually
- More than 1,600 miles of H<sub>2</sub> pipeline
- World's largest H<sub>2</sub> storage cavern

#### **Hydrogen Demand and H2@Scale Projects**



waste to H<sub>2</sub> projects

#### **Hydrogen Stations Plans Across States**

#### California

200 Stations Planned California Fuel Cell Partnership Goal **Northeast** 12 – 20

Stations Planned HI, OH, SC, NY, CT, MA, CO, UT, TX, MI And Others 0-50 50-100

100 - 200

200 - 400 400 - 800

**Hydrogen Production Units** 

Gaseous Metric Tons/Day

## **H2@Scale Projects to Demonstrate Technology and Train Future Workforce**

## Different regions, hydrogen sources, end uses & educational opportunities

## H<sub>2</sub> for Marine Application



#### **California**

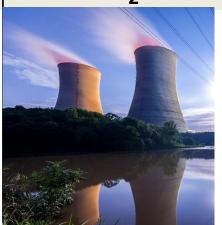
1st-of-its-kind maritime H<sub>2</sub> refueling on floating barge - up to ½ ton H<sub>2</sub> /day

## H<sub>2</sub> for Steel Production



#### Missouri

Reduction of 30% in energy and 40% emissions vs. conventional processes


## H<sub>2</sub> from Renewables



#### **Texas**

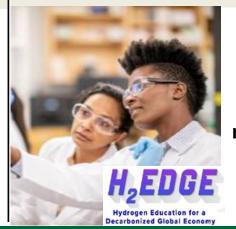
Integrates wind, solar, RNG from waste with onsite electrolysis and multiple end-uses

#### H<sub>2</sub> from Nuclear



#### **New York**

Demonstrates a
MW electrolyzer
with a nuclear
plant
(collaboration with
Nuclear Office)


## H<sub>2</sub> for Data Center



## Washington

Integrates a
1.5MW fuel cell
with a data center
to provide reliable
and resilient
power

#### **Workforce Development**



#### **Multi-state**

A Training,
education and
recruiting program
to build skills
needed in the H<sub>2</sub>
industry