Careers for Physicists, Scientists, and Engineers in the Semiconductor Equipment Industry

Jerome Hubacek Managing Director Lam Research Corporation Fremont, CA

Lam Research Corporation

Careers in the Semiconductor Equipment Industry

- Introduction to the Semiconductor Equipment Industry
- Career opportunities
- Profile of the successful employee
- Transitioning from Graduate School to the Semiconductor Equipment Industry
- Keys to success

Introduction to the Semiconductor Equipment Industry

Semiconductor Technology Continues to Drive New Capabilities

Market for Wafer Fabrication Equipment (WFE)

Semiconductor Equipment Manufacturer Revenues

Rank	2006	2007	2008	2009	2010
1	Applied Materials				
2	Tokyo Electron	Tokyo Electron	ASML	ASML	ASML
3	ASML	ASML	Tokyo Electron	Tokyo Electron	Tokyo Electron
4	KLA-Tencor	KLA-Tencor	KLA-Tencor	KLA-Tencor	Lam Research
5	Lam Research	Lam Research	Lam Research*	Lam Research	KLA-Tencor
6	Nikon	Nikon	Nikon	Nikon	Dainip
7	Novellus Systems	Novellus Systems	Dainippon Screen	Dainippon Screen	Nikon
8	Dainippon Screen	Dainippon Screen	Hitachi High-Tech	Novellus Systems	Novellus Systems
9	Canon	Hitachi High-Tech	Novellus Systems	Aixtron	Aixtron
10	Hitachi High-Tech	Varian	Canon	Hitachi High-Tech	Varian

Lam acquisition of Novellus projected to close in Q2 2012

* Includes SEZ AG, acquired 2008 Source: Gartner Dataquest

Visualizing Moore's Law

Moore's Law Has Evolved Over Time

Source: Gordon Moore, ISSCC 2003 & Intel 2010

Implications of Moore's Law: Higher Performance, Lower Cost

Equipment Solutions must be ahead of customer needs to meet roadmap

Predicting the End of Moore's Law: Historical Perspective

Materials Limitations:

"Copper is an intractable material. The reason we don't use copper is NOT because we haven't tried over the years." **Device Physics Limitations:**

"...we get to 0.05 micron [50 nm] in something like 2017...so that's the end of Moore's Law!"

Lithography Limitations:

"[For lithography] to go down to 0.10 micron [100 nm]... there's hardly anything left at 193nm [wavelength]"

Uncertainty around the extendibility of Moore's Law has always existed

Source: "Moore's Law extended: The return of cleverness", Solid State Technology, July 1997

Continuous Innovation Enables Continuation of Moore's Law

Technology Inflections Enabling Continuation of Moore's Law

and going beyond double patterning

Quadruple

Patterning

Double

Patterning

(DPT)

Patterning

Materials Used in Semiconductor Devices in the 1980's

Source: ITRS 2005, Lam Research

Materials used in the 80s

Materials Used in Semiconductor Devices in the 1990's

Source: ITRS 2005, Lam Research

Materials in the 80s

Materials added in the 90s

The Next Challenge – Growth in Potential New Materials

Etching and cleaning vastly different materials

Lam Research Corporation

The Edge of the Wafer Plays a Critical Role in Overall Economics

What variables define the available process space? - Etch Example

List of Process Variables (# different settings that can change the result on a wafer)

- Pressure (10mT, 20mT, … 100mT) = 10 settings
- Reactant Gas #1 flow rate (0sccm, 10sccm, 100sccm) = 10
- Reactant Gas #2 flow rate (0sccm, 1sccm, 10sccm) = 10
- Reactant Gas #16 flow rate (0sccm, 100sccm, 500sccm) = 5
- Power @ frequency #1 (0W, 100W, ..., 3000W) = 30
- Power @ frequency #2 (0W, 50W, ..., 500W) = 10
- Power @ frequency #3 (0W, 100W, …, 1000W) = 10

10 x 10 x 10 ... x 5 x 30 x 10 x 10 x ... = 10^(really big number)

- ...

- ...

Now add in hardware and wafer variables...

Process Variables (different settings that can change the result on a wafer)

- Pressure (10mT, 20mT, ... 100mT) = 10 settings
- Reactant Gas #1 flow rate (0sccm, 10sccm, 100sccm) = 10
- Reactant Gas #2 flow rate (0sccm, 1sccm, 10sccm) = 10
- ...
- Reactant Gas #16 flow rate (0sccm, 100sccm, 500sccm) = 5 _
- Power @ frequency #1 (0W, 100W, ..., 3000W) = 30
- Power @ frequency #2 (0W, 50W, ..., 500W) = 10
- Power @ frequency #3 (0W, 100W, ..., 1000W) = 10

...

- Hardware variables
 - Chamber diameter
 - **Chamber heights**
 - **Chamber temperature**
 - Wafer temperature
 - Chamber materials chemical properties _
 - **Chamber materials electrical properties**
- Wafer variables
 - Material being etched
 - Type of mask (photoresist)
 - Percent exposed area of wafer being etched
 - Substrate resistivity

Lam Research Corporation

...

Slide - 21

How Can We Possibly Pick "One in a Trillion"

- Learn from past experience (Knowledge Management).
- Use modeling to help narrow the space.
- Use sensors, diagnostics and "smart" software.
- Hire really smart and motivated people.
- Run lots of experiments.

Semiconductor Equipment Industry Career Opportunities

Semiconductor Equipment Industry Jobs

- Design/Hardware Engineer: Creates the knobs
- Supplier Engineer: Develops suppliers to make the knobs
- Process Engineer: Determines what knobs are needed and turns the knobs to optimize for customer applications
- Product Engineer: Optimizes the knobs
- Field Engineer: Solves problems with the knobs on site

Technical background and industry experience are required for many product development functions including Technical Marketing, Product Management, Supplier Business Management

Semiconductor Equipment Industry Employee Profile

Lam Research Corporation

Semiconductor Equipment Industry: Employee Profile

Majors:

- Physics
- Chemistry
- Engineering (Electrical, Chemical, Mechanical, Materials Science)
- Computer Science
- Education: PhD, MS, BS
- Lam Research Statistics
 - Total Employees: >3800
 - Advanced Degrees: ~1200
 - PhD's: ~400
 - UIUC Grads: 21 (13 PhD's)
- Advanced degrees with experimental experience are preferred
 - Direct semiconductor experience is <u>NOT</u> required
 - Strong foundation in coursework and experimental work (wafer processing, vacuum, low temp, plasmas, metrology, transport measurements, optics, etc.)
 - Design, Simulation, and Modeling experience (CAD, FEA, CFD, plasmas, etc.)
 - Managing research projects (budget, plan, and build experimental setups, write proposals)
 - Multi-cultural: Semiconductor Equipment is a global industry

Lam Research Global Support – Close to Our Customers

Transitioning from Grad School to the Semiconductor Equipment Industry

Similarities b/w Grad School and the Semiconductor Equipment Industry

- Have a passion for what you do you are going to be doing it for a long time
 - Time from entering college to graduation with a PhD: ~8-11 years
 - Time in your career: >>20 years
- Learn at every opportunity
 - On the job, in the lab, coursework, outside reading, seminars
- <u>Communication</u> is critical
 - Good ideas can go to waste if not properly communicated
 - Confront small issues before they get big
- Hard work is necessary to maximize your opportunities
 - "The more you practice, the luckier you get."
- You have very few <u>customers treat them well</u>
 - Grad School: Your advisor, your professors, colleagues
 - Industry: 70% of capital equipment purchases are made by 10 customers

Differences b/w Grad School and the Semiconductor Equipment Industry

The product is different (How you keep score)

- Grad school: Teaching, learning (grades), papers, grants (Publish or Perish)
- Industry: Selling goods and services for profit (Profit or Perish)

The <u>approach</u> is different

- Grad school: Learning on the job → mistakes are expected and ok (as long as you learn from them); nothing is "beneath" you; prove a concept
- Industry: Mistakes must be minimized; employees work on things at or above their grade level; prove in production

The <u>customer</u> is different

- Grad school: Work is directed by advisors, professors, and funding agencies based on broad guidelines; students are the primary users of experimental equipment
- Industry: Work is dictated by shareholders, markets, competition, and detailed customer requirements; customers (operators) are the primary users of the equipment Not allowed: "Designed by PhD's for PhD's"

The <u>milestones</u> are different

- Grad school: Milestones are based on exam dates, graduation dates, conferences
- Industry: Milestones are customer and finance driven; patents are part of development
- The money is different

Lam Research Continues to Invest Through the Cycles

- Revenue of \$2.8B in CY 2011
- More than \$1B invested in R&D over last three years
- R&D investment continues through downturns → Moore's Lam holds through cycles

Keys to Success in the Semiconductor Equipment Industry

Keys to Success in the Semiconductor Equipment Industry

Solve problems systematically

- Know what problem you are trying to solve (Listen carefully)
- Involve all stakeholders in the process
- Know what success looks like
- Determine the root cause and consider all solution options
- Implement the solution and make sure it sticks
- Set aggressive targets for yourself and achieve them
- Make data-driven <u>decisions</u>
- Be a leader, not a "status-er"
- Be a simplifier, not a complicator → know when to focus
- Communicate openly (up, down, left, and right) and ask for help before the situation is irresolvable (no surprises)
- Demonstrate Versatility, Flexibility, and Agility (if business changes, you adapt)
- Demonstrate Core Values
- Remember that the customer is always right**

And.....

Be FAST to Customer Solutions

The results...

... technology driven products enabling Moore's Law.

Acknowledgements

- Professor Lance Cooper for giving me the opportunity to speak today
- Dave Hemker, Lam VP of R&D, for many of the introductory slides
- Jim Bagley, Lam Chairman, for excerpts from his "Top 10 things a manager should do" presentation
- Steve Newberry and Martin Anstice, former and current Lam CEO's, for excerpts from the "Lam Problem Solving and Decision Making Process"
- Lam Corporate Marketing Team for Lam and industry overview slides

FAST to Customer Solutions

Lam Research at a Glance

- Major supplier of wafer fab equipment and services
 - Headquartered in Fremont, California, with facilities in Asia, Europe, and North America
 - ~3,850 Employees worldwide
 - Revenue of \$2.8B in CY 2011
- Etch and Clean product lines offer leading technologies for performance and extendibility
 - Conductor, dielectric, MEMS, deep silicon, and through-silicon via (TSV) etch
 - Wet and plasma-based single-wafer clean
- Customer Support Business Group (CSBG) dedicated to optimizing installed equipment performance and operational efficiency

Lam Research: Mission, Vision, and Core Values

Mission:

Lam Research is dedicated to the success of our customers by being a world-class provider of innovative productivity solutions to the semiconductor industry.

Vision Objectives:

- #1 in customer trust
- #1 in market share
- A company where successful people want to work
- A multi-product company
- Financial performance appropriate to:
 - Support the productivity solutions our customers require
 - What our shareholders expect

Core Values:

- Achievement
- Ownership and accountability
- Mutual trust and respect
- Honesty and integrity
- Innovation and continuous improvement
- Open communication
- Teamwork
- Think: customer, company, individual

Lam Research Product & Technology Milestones

Lam Research – Where Successful People Want to Work

Company

Advancing semiconductor manufacturing for more than 30 years

- Market share leader
- Financially sound
- Operations excellence
- Open and collaborative environment that fosters innovation

Leadership

Experienced management team with proven record of success

- Lam's senior management recognized among the best leaders in the industry
- Technology experts in Etch and Clean
- Local management in each region

Employees

Experienced, talented, and dedicated global workforce

- Multi-cultural and diverse
- Actively demonstrate Lam's Core Values
- Cross-functional teams work in collaborative environment
- 75% of promotions from within the Company

Community

Extension of the Company's Core Values into our employees' communities

- Lam Research Foundation grants
- Core Values Scholarship program
- Employee gift/volunteer time matching
- Food drive, toy drive, blood drives, and other outreach activities

Lam Research Is #1 in Etch Shipped Market Share

Lam Research surpassed 50% market share in 2010

Source: Lam Research Corp.

FAST to Customer Solutions

