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Outline

* Introduction

* Work on the MuCap Experiment

* Analysis of complex data in a high-throughput
computing environment.
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* A brief primer to biology and introduction to 35
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Thanks to Sushmita Roy and Alireza Siahpirani for contributing slides on gene regulatory networks.

* Questions



My own background

B.S. from the University of Wisconsin at Madison - Math and Physics \ 4
* Also took an introductory biology curriculum and organic chemistry. W]SCONS]N

M.S. from the University of lllinois at Urbana
* Course work in mathematical methods, quantum mechanics, field theory and statistical mechanics
* Did beam line simulation work for the g-2 experiment.

Ph.D. from the University of Illinois at Urbana
*  Work on the MuCap experiment, muon capture on the proton

2012 - Present — Postdoctoral Trainee in Computational Biology at the Wisconsin Institute for Discovery.

* Research in the regulation of gene expression in the context of evolution and cancer. M
* Funded by the CIBM program — more about that in a moment. WISCONSIN
* Capstone certificate in Bioinformatics — course work in computational biology, statistics and INSTITUTE FOR DISCOVERY

graphical models



More about the Wisconsin Institute for Discovery.

L\ e/

An inter disciplinary research environment, with | "' 1 [y
many themes focusing on biomedical medical ) e
research, but also many other initiatives ;,_ff “
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WARF

Wisconsin Alumni Research Foundation >4 e

https://discovery.wisc.edu

WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON



The Computational Informatics in Biology and Medicine program.

| am a funded by the CIBM program on the campus of the h&;}

University of Wisconsin, which is a training program through

the National Library of Medicine. W]SCONS]N

VERSITY OF WISCu SIN-MADISON

casiit]

http://www.cibm.wisc.edu

We are one of multiple training programs run at campuses '
across the country, including Stanford and Harvard. a
4| B‘F

https://www.nlm.nih.gov/ep/GrantTrainlnstitute.html - = o a
Provided a core community of fellow trainees and PI’s to - B
interact with

?\ o
Activities include the annual NLM conferences, and a weekly

seminar during the academic year.



Just what kind of training did | come from?

Indulge me three slides on my thesis work...



The MuCap Experiment

Muon capture on the proton
(MuCap)

Grew out of the study of
hydrogen fusion
* atthe level of fundamental
particle interactions.

* Physics motivation: quark-
gluon substructure of the
proton, g,

My work was to measure the
rate of molecular state
formation.



Description of the time distribution
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n:u\r (t)

n’,Ortho (t)

ni’ara (t)

=(Au + Appu + Apar + As + App)ny(t), np(t = 0)
Aparnup(t) — (R + Aar)npac(t), and nya:(t = 0)
= Appunyp(t) = (A + Aop + Ao)n0rtno(t), where nopmo(t = 0)
Apinp(t) + AopTortno(t) — (A + Ap)npara(t). and Npg, (t = 0)

ng)bs.,:\r(t) — )‘p (nup(t) + Npara (t) | nOrtho(t)) + e;\rh/\pnuAr(t).

Differential equations, initial conditions, full time distribution.

Atomicphysics parametersf, h,and e,,
* relative contribution of pAr state decays

The hydrogen kineticrates, A, As, Aoy, Ay No, and Ay
* Directly affect the time distribution of events

The fit functionis A n.(t)+B




Fit to the decay electron time distribution

| Decay Electron Time Spectrum With Fit | Population of kinetic states
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Carry-overs in Computational Biology

* Analysis of complex data from a high-throughput
computational environment.
* C++ code development
e Statistical analysis

* Integrative study of processes on multiple spatial and temporal
scales.

* The extraction and interpretation of results from complex
systems.




What controls phenotypic diversity?

Phenotypic trait

Changes in gene expression & regulation play a major
role in diversifying phenotype.

11



How are gene expressed? The central dogma.

DNA
D¢ ’\“\‘% IS l _
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http://www.ncbi.nlm.nih.gov/Class/MLACourse/Modules/MolBioReview/central_dogma.html



Who regulates whom?

@ ? Regulators

Target




Regulation of Gene Expression is Multilayered

. DNA . Chromatin
T methylation T modifications
Histone Nucleosome

I

binding sites
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Transcription-factor

Transcription
DNA factor

Transcription
machinery

_ Long-range .. Promoter
regulatory l architecture
elements

© Functional
l genomic
elements
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chromatin
interactions
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Image: ENCODE Consortium



One mode of gene regulation: transcription factor
binding at cis-regulatory elements in the genome.

— DNA

15



Modeling a regulatory network

Transcription factor @ «— Kinase —signaling protein

‘ ON - induced ; OFF - repressed

. -
AAA

Motif
LINEAR

DIFF. EQNS
B(X1,X;) PROBABILITY

4

Structure Function

Who are the regulators? How do they determine expression levels?




Types of data for reconstructing networks

* Physical
* ChIP-chipand ChIP-seq
* Sequence-specific binding - motifs
* Regulator centric

* Functional
* Gene expression
* Measure dynamic information

e Can potentially recover genome-wide
regulatory networks

M
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Genes

Expression levels

Gene



Expression-based network inference

/ Samples

Genes

kExpression levels

o

Algorithm




MERLIN: A network reconstruction method to
predict regulators of genes and modules

@ 000 @O0

Y (co-expressed
! genes)

Reconstruction per GENE:

Learn precise models of

requlation for each gene

o 0o

module:‘ vl %],
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___________

Reconstruction per MODULE:
Reveals modular organization
of regulator)g(tworks

I —

MERLIN: Reconstruction per GENE
but MODULE constrained

Roy et al, 2013 Plos comp bio



MERLIN learning algorithm
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Data from The Cancer Genome Atlas

Cancer Genome Atlas Research Network:
e Weinstein et al. Nat Genet. 2013

Microarray gene expression data for 6 cancers:
(1) Breast (BRCA)
(2) Colon (COAD)
(3) Kidney ma (KIRC)
(4) Lung (LUSC)
(5) Ovarian (OV)
(6) Uterine (UCEC).

Expression Data
54 (UCEC) to 598 (OV) patient samples

8499 genes were selected
* Variation in expression across patient samples in each data set

* Any gene annotated in curated NCI cancer pathways

1050 were known transcription factors TFs and kinases — regulators



The inferred networks are distinctly different

—
F-score or harmonic mean for Edge in CancerA =
the set of edges in the network Edge in Cancer B m——s
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Common regulators are associated with chromatin,
cell cycle and immune response

Consists of edges between 75 regulatory proteins and 156 target genes

Legend
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NFE2L3: a hub in thé COAD network

W. Reardan




Expression in consensus modules
BRCA
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Validating that our modules are biologically coherent
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"NCI Pathways "H1 DNase | "REACTOME
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Fraction of enriccfged modules
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BRCA COAD KIRC LUSC ov UCEC

Here we have several sets of annotated genes, and each set provides us lists of gens with a certain biological significance.

We look to find if our modules are significantly enriched in genes from any of these annotated sets using a Hypergeometric test

Above we count the fraction of modules that have an enrichment with 0.05 significance in the results from each data set.



An example of a module

LUSC (module 14)
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Enrichments for motifs of immune system regulators
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interferon regulatory factor (IRF) family —all cancers
regulatory factor X (RFX) — five cancers
signal transducer and activator of transcription (STAT1) —five cancers

All regulators of the immune system



Immune system function is over-represented

Number of Modules
0.01.0 3.04.0

Adaptive immune system

Cytokine signaling in immune system
Immune system

Interferon alpha beta signaling
Interferon gamma signaling
Interferon signaling
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Natural killer cell mediated cytotoxicity

Primary immunodeficiency
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T Cell receptor signaling pathway
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Is the immune system induced or repressed?

Modules associated with the

Immune system: Average 1.16 0.05 1.02 0.06 1.630.06 1.6 0.52 1.08-0.18 0.46 0.12

Samples

f Il B
Gerfex observations of
im ctivatian in

anti-cancer therapy
* Apetoh et al. Na\t. Med.
2007
Per-gene, per-sample

* Known crgg@fgﬁéi%bélﬁé‘ﬂﬁ?m of
activation between STAT3 and
Maogiles net asseaitipgs with the

immene syssem: Nat. Med. 2010
Samples

-~ B
enes -
"

Per-sample\Expression Values




Summary

* We have introduced stability-selection into our MERLIN-based approach to
infer regulatory networks across different conditions.

e QOur approach builds on the idea that both module- and network-based
characterization of transcriptional programs are important.

* Our methods can be extended with additional data types.

Knaack SA, Siahpirani AF, Roy S. A pan-cancer
modular regulatory network analysis to identify
common and cancer-specific network components.
Cancer Inform. 2014 Oct 28;13(Suppl. 5):69-84.

doi: 10.4137/CIN.S14058
PMID: 25374456 [PubMed]




Conclusions

Work with beautiful complex systems, rich for exploration and discovery.
Computational biology is a fast paced field, with many emerging technologies and methods.
The mindset towards measurements is different than what you are used to from physics.

It’s a field that will have an increasing impact on medicine and human health as we learn more.
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