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Outline

• Introduction	

• Work	on	the	MuCap Experiment
• Analysis	of	complex	data	in	a	high-throughput	
computing	environment.

• A	brief	primer	to	biology	and	introduction	to	
the	work	I	do	now

• Questions

Thanks	 to	Sushmita Roy	and	Alireza Siahpirani for	contributing	 slides	 on	gene	regulatory	networks.



My	own	background

• B.S.	from	the	University	 of	Wisconsin	 at	Madison	 	- Math	and	Physics
• Also	 took	an	introductory	 biology	 curriculum	 and	organic	chemistry.

• M.S.	from	the	University	 of	Illinois	 at	Urbana
• Course	work	 in	mathematical	methods,	 quantum	mechanics,	 field	 theory	and	statistical	mechanics
• Did	beam	line	simulation	 work	 for	the	g-2	experiment.	

• Ph.D.	from	the	University	 of	Illinois	 at	Urbana
• Work	 on	the	MuCap experiment,	 muon capture	on	the	proton

• 2012	- Present – Postdoctoral	 Trainee	in	Computational	 Biology	 at	the	Wisconsin	 Institute	for	Discovery.
• Research	in	the	regulation	 of	gene	expression	 in	the	context	of	evolution	 and	cancer.	
• Funded	 by	the	CIBM	program	– more	about	 that	in	a	moment.
• Capstone	 certificate	in	Bioinformatics	 – course	work	 in	computational	 biology,	 statistics	and	

graphical	models	



More	about	the	Wisconsin	 Institute	for	Discovery.

An	inter	disciplinary	 research	environment,	 with	
many	themes	 focusing	 on	biomedical	 	medical	
research,	 but	also	many	other	initiatives

https://discovery.wisc.edu



The	Computational	 Informatics	 in	Biology	and	Medicine	program.	

• I	am	a	funded	 by	the	CIBM	program	on	the	campus	of	the	
University	 of	Wisconsin,	 which	 is	a	training	program	through	
the	National	Library	of	Medicine.	

• http://www.cibm.wisc.edu

• We	are	one	of	multiple	 training	programs	run	 at	campuses	
across	the	country,	 including	 Stanford	 and	Harvard.

• https://www.nlm.nih.gov/ep/GrantTrainInstitute.html

• Provided	 a	core	community	 of	fellow	 trainees	and	PI’s	 to	
interact	with

• Activities	 include	 the	annual	NLM		conferences,	 and	a	weekly	
seminar	 during	 the	academic	year.	



Just	what	kind	of	training	did	I	come	from?

Indulge	me	three	slides	on	my	thesis	work…



The	MuCap Experiment

• Muon capture	on	the	proton	
(MuCap)

• Grew	out	of	the	study	of	
hydrogen	fusion
• at	the	 level	of	fundamental	

particle	interactions.

• Physics	motivation:	quark-
gluon	substructure	of	the	
proton,	gp

• My	work	was	to	measure	the	
rate	of	molecular	state	
formation.



Description	of	the	time	distribution

• Differential	equations,	initial	conditions,	full	time	distribution.	

• Atomic	physics	parameters	f,	h,	and	eAr
• relative	contribution	of	μAr state	decays

• The	hydrogen	kinetic	rates,	λμ,	ΛS,	λop,	Λpf,	 ΛO,	and	ΛP

• Directly	affect	the	time	distribution	of	events

• The	fit	function	is	A	ne(t)+B



Fit	to	the	decay	electron	time	distribution
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• 4.25	x	108 events

• Basic	fit	results

• Λppμ=2.208(65)	x	104 s-1

• ΛpAr=4.529(15)	x	104 s-1

• ΛAr=1.302(14)	x	106 s-1

• χ2/Ndf=0.983(64)



Carry-overs	in	Computational	 Biology
• Analysis	of	complex	data	from	a	high-throughput	
computational	environment.
• C++	code	development
• Statistical	analysis

• Integrative	study	of	processes	on	multiple	spatial	and	temporal	
scales.

• The	extraction	and	interpretation	of	results	from	complex	
systems.



What	controls	phenotypic	 diversity?

Changes	in	gene	expression	&	regulation	play	a	major	
role	in	diversifying	phenotype.	

Phenotypic trait

11



How	are	gene	expressed?	The	central	dogma.

http://www.ncbi.nlm.nih.gov/Class/MLACourse/Modules/MolBioReview/central_dogma.html



Who	regulates	whom?

? … Regulators

Target

? ?



Regulation	of	Gene	Expression	 is	Multilayered

Image:	ENCODE	Consortium



One	mode	of	gene	regulation:	transcription	factor	
binding	at	cis-regulatory	elements	in	the	genome.	

15
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Modeling	a	regulatory	network	

Structure
Who	are	the	regulators?

ψ(X1,X2)

Function

X1 X2

Y

BOOLEAN
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DIFF.	EQNS
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…
.

How	do	they	determine	 expression	 levels?

ON	- induced

Motif

Transcription	 factor	 Kinase	 – signaling	 protein

OFF	 - repressed

X1

X1 X1

Y

Y Y

X2

X2



Types	of	data	for	reconstructing	networks

• Physical
• ChIP-chip	and	ChIP-seq
• Sequence-specific	binding	- motifs
• Regulator	centric

• Functional
• Gene	expression
• Measure	dynamic	information
• Can	potentially	recover	genome-wide	
regulatory	networks

Gene

motifChIP

differences from the mean ranged from 30 (in vineyard strain I14)
to nearly 600 (in clinical isolate YJM789), with a median of 88
expression differences per strain. The number of expression
differences did not correlate strongly with the genetic distances of
the strains (R2 = 0.16). However, this is not surprising since many
of the observed expression differences are likely linked in trans to
the same genetic loci [27,31,34,35,43]. Consistent with this
interpretation, we found that the genes affected in each strain
were enriched for specific functional categories (Table S4),
revealing that altered expression of pathways of genes was a
common occurrence in our study.
We noticed that some functional categories were repeatedly

affected in different strains. To further explore this, we identified
individual genes whose expression differed from the mean in at
least 3 of the 17 non-laboratory strains. This group of 219 genes
was strongly enriched for genes involved in amino acid metabolism
(p,10214), sulfur metabolism (p,10214), and transposition
(p,10247), revealing that genes involved in these functions had
a higher frequency of expression variation. Differential expression

of some of these categories was also observed for a different set of
vineyard strains [26,28], and the genetic basis for differential
expression of amino acid biosynthetic genes in one vineyard strain
has recently been linked to a polymorphism in an amino acid
sensory protein [35]. We also noted that the 1330 genes with
statistically variable expression in at least one non-laboratory
strain were enriched for genes that contained upstream TATA
elements [46] (p = 10216) and genes with paralogs (p = 1026) but
under-enriched for essential genes [47] (p = 10225). The trends
and statistical significance were similar using 953 genes that varied
significantly from YPS163. Thus, genes with specific functional
and regulatory features are more likely to vary in expression under
the conditions examined here, consistent with reports of other
recent studies [30,43,48,49] (see Discussion).

Influence of Copy Number Variation on Gene Expression
Variation
Expression from transposable Ty elements was highly variable

across strains. However, Ty copy number is known to vary widely

Figure 3. Variation in gene expression in S. cerevisiae isolates. The diagrams show the average log2 expression differences measured in the
denoted strains. Each row represents a given gene and each column represents a different strain, color-coded as described in Figure 1. (A) Expression
patterns of 2,680 genes that varied significantly (FDR= 0.01, paired t-test) in at least one strain compared to S288c. (B) Expression patterns of 953
genes that varied significantly in at least one strain compared to strain YPS163 (FDR= 0.01, unpaired t-test). For (A) and (B), a red color indicates
higher expression and a green color represents lower expression in the denoted strain compared to S288c, according to the key. (C) Expression
patterns of 1,330 genes that varied significantly (FDR= 0.01, paired t-test) in at least one strain compared to the mean expression of all 17 strains.
Here, red and green correspond to higher and lower expression, respectively, compared to the mean expression of that gene in all strains. Genes
were organized independently in each plot by hierarchical clustering.
doi:10.1371/journal.pgen.1000223.g003

Phenotypic Variation in Yeast

PLoS Genetics | www.plosgenetics.org 5 October 2008 | Volume 4 | Issue 10 | e1000223
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Expression-based	 network	inference
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differences from the mean ranged from 30 (in vineyard strain I14)
to nearly 600 (in clinical isolate YJM789), with a median of 88
expression differences per strain. The number of expression
differences did not correlate strongly with the genetic distances of
the strains (R2 = 0.16). However, this is not surprising since many
of the observed expression differences are likely linked in trans to
the same genetic loci [27,31,34,35,43]. Consistent with this
interpretation, we found that the genes affected in each strain
were enriched for specific functional categories (Table S4),
revealing that altered expression of pathways of genes was a
common occurrence in our study.
We noticed that some functional categories were repeatedly

affected in different strains. To further explore this, we identified
individual genes whose expression differed from the mean in at
least 3 of the 17 non-laboratory strains. This group of 219 genes
was strongly enriched for genes involved in amino acid metabolism
(p,10214), sulfur metabolism (p,10214), and transposition
(p,10247), revealing that genes involved in these functions had
a higher frequency of expression variation. Differential expression

of some of these categories was also observed for a different set of
vineyard strains [26,28], and the genetic basis for differential
expression of amino acid biosynthetic genes in one vineyard strain
has recently been linked to a polymorphism in an amino acid
sensory protein [35]. We also noted that the 1330 genes with
statistically variable expression in at least one non-laboratory
strain were enriched for genes that contained upstream TATA
elements [46] (p = 10216) and genes with paralogs (p = 1026) but
under-enriched for essential genes [47] (p = 10225). The trends
and statistical significance were similar using 953 genes that varied
significantly from YPS163. Thus, genes with specific functional
and regulatory features are more likely to vary in expression under
the conditions examined here, consistent with reports of other
recent studies [30,43,48,49] (see Discussion).

Influence of Copy Number Variation on Gene Expression
Variation
Expression from transposable Ty elements was highly variable

across strains. However, Ty copy number is known to vary widely

Figure 3. Variation in gene expression in S. cerevisiae isolates. The diagrams show the average log2 expression differences measured in the
denoted strains. Each row represents a given gene and each column represents a different strain, color-coded as described in Figure 1. (A) Expression
patterns of 2,680 genes that varied significantly (FDR= 0.01, paired t-test) in at least one strain compared to S288c. (B) Expression patterns of 953
genes that varied significantly in at least one strain compared to strain YPS163 (FDR= 0.01, unpaired t-test). For (A) and (B), a red color indicates
higher expression and a green color represents lower expression in the denoted strain compared to S288c, according to the key. (C) Expression
patterns of 1,330 genes that varied significantly (FDR= 0.01, paired t-test) in at least one strain compared to the mean expression of all 17 strains.
Here, red and green correspond to higher and lower expression, respectively, compared to the mean expression of that gene in all strains. Genes
were organized independently in each plot by hierarchical clustering.
doi:10.1371/journal.pgen.1000223.g003

Phenotypic Variation in Yeast
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MERLIN:	A	network	reconstruction	method	to	
predict	regulators	of	genes	and	modules

Roy	et	al,	2013	Plos comp	bio



MERLIN	learning	algorithm

Samples



Data	from	The	Cancer	Genome	Atlas

• Cancer	Genome	Atlas	Research	Network:
• Weinstein	 et	al.	Nat	Genet.	2013

• Microarray	gene	expression	 data	for	6	cancers:
(1) Breast	(BRCA)
(2) Colon	 (COAD)
(3) Kidney	ma	(KIRC)
(4) Lung	(LUSC)
(5) Ovarian	(OV)
(6) Uterine	(UCEC).

• 54	(UCEC)	 to	598	(OV)	patient	samples	

• 8499	genes	were	selected	
• Variation	in	expression	 across	patient	samples	 in	each	data	set
• Any	gene	annotated	in	curated	NCI	cancer	pathways

• 1050	were	known	 transcription	 factors	TFs	and	kinases	 – regulators



The	inferred	networks	are	distinctly	different

F-score	 or	harmonic	mean	for	
the	set	of	edges	 in	the	network

How	great	is	the	overlap		of	
edges	in	the	network	from	
cancer	A	and	the	network	of	
cancer	B?



Common	 regulators	are	associated	with	chromatin,	
cell	cycle	and	immune	response
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NFE2L3:	a	hub	in	the	COAD	network

W.	Reardan



Expression	 in	consensus	modules
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(590 Samples)
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Validating	that	our	modules	are	biologically	 coherent

0

0.2

0.4

0.6

0.8

1

1.2

BRCA COAD KIRC LUSC OV UCEC

NCI Pathways H1 DNase I REACTOME
Gene Ontology Cancer celllines DNase I KEGG

Fr
ac
tio

n	
of
	e
nr
ich

ed
	m

od
ul
es

Here	we	have	several	 sets	of	annotated	genes,	 and	each	set	provides	 us	lists	 of	gens	with	a	certain	biological	 significance.

We	 look	 to	find	 if	our	modules	 are	significantly	 enriched	 in	genes	 from	any	of	these	annotated	sets	using	 a	Hypergeometric	 test

Above	we	count	 the	fraction	 of	modules	 that	have	an	enrichment	 with	0.05	significance	 in	the	results	 from	each	data	set.



An	example	of	a	module

Targets of regulators predicted by MERLIN
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Enrichments	 for	motifs	of	immune	system	regulators

Number of Modules
0.0 1.0 2.0 3.0 4.0

BRCA COAD KIRC LUSC OV UCEC

• interferon	regulatory	factor	(IRF)	family	– all	cancers
• regulatory	factor	X	(RFX)	– five	cancers	
• signal	transducer	and	activator	of	transcription	(STAT1)	– five	cancers

• All	regulators	of	the	immune	system
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Immune	system	function	is	over-represented
Number of Modules
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Is	the	immune	system	induced	or repressed?
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• Consistent	 with	observations	 of	
immune	 system	activation	in	
anti-cancer	therapy
• Apetoh et	al.	Nat.	Med.	

2007

• Known	 cross-talk	mechanism	 of	
activation	between	 STAT3	and	
interleukin	 6	signaling
• Lee	et	al.	Nat.	Med.	2010



Summary

• We	have	introduced	stability-selection	into	our	MERLIN-based	approach	to	
infer	regulatory	networks	across	different	conditions.

• Our	approach	builds	on	the	idea	that	both	module- and	network-based	
characterization	of	transcriptional	programs	are	important.

• Our	methods	can	be	extended	with	additional	data	types.	

Knaack	SA,	 Siahpirani AF,	Roy	S.	A	pan-cancer
modular	 regulatory	network	 analysis	 to	identify
common	 and	cancer-specific	 network	 components.
Cancer	Inform.	2014	Oct	28;13(Suppl.	 5):69-84.	
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Conclusions

Work	with	beautiful	complex	systems,	rich	for	exploration	and	discovery.

Computational	biology	is	a	fast	paced	field,	with	many	emerging	technologies	and	methods.

The	mindset	towards	measurements	 is	different	than	what	you	are	used	to	from	physics.

It’s	a	field	that	will	have	an	increasing	impact	on	medicine	 and	human	health	as	we	learn	more.	
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