### **Physicist Meets Biology**



http://xkcd.com

Sara Knaack Urbana Champaign 4/8/2016

### Outline

- Introduction
- Work on the MuCap Experiment
  - Analysis of complex data in a high-throughput computing environment.
- A brief primer to biology and introduction to the work I do now



• Questions

Thanks to Sushmita Roy and Alireza Siahpirani for contributing slides on gene regulatory networks.

### My own background

- B.S. from the University of Wisconsin at Madison Math and Physics
  - Also took an introductory biology curriculum and organic chemistry.
- M.S. from the University of Illinois at Urbana
  - Course work in mathematical methods, quantum mechanics, field theory and statistical mechanics
  - Did beam line simulation work for the g-2 experiment.
- Ph.D. from the University of Illinois at Urbana
  - Work on the MuCap experiment, muon capture on the proton
- 2012 Present Postdoctoral Trainee in Computational Biology at the Wisconsin Institute for Discovery.
  - Research in the regulation of gene expression in the context of evolution and cancer.
  - Funded by the CIBM program more about that in a moment.
  - Capstone certificate in Bioinformatics course work in computational biology, statistics and graphical models







## More about the Wisconsin Institute for Discovery.

An inter disciplinary research environment, with many themes focusing on biomedical medical research, but also many other initiatives







https://discovery.wisc.edu



### The Computational Informatics in Biology and Medicine program.

- I am a funded by the CIBM program on the campus of the University of Wisconsin, which is a training program through the National Library of Medicine.
- http://www.cibm.wisc.edu
- We are one of multiple training programs run at campuses across the country, including Stanford and Harvard.
- https://www.nlm.nih.gov/ep/GrantTrainInstitute.html
- Provided a core community of fellow trainees and PI's to interact with
- Activities include the annual NLM conferences, and a weekly seminar during the academic year.





Just what kind of training did I come from?

Indulge me three slides on my thesis work...

### The MuCap Experiment



- Muon capture on the proton (MuCap)
- Grew out of the study of hydrogen fusion
  - at the level of fundamental particle interactions.
  - Physics motivation: quarkgluon substructure of the proton, g<sub>p</sub>
- My work was to measure the rate of molecular state formation.

### Description of the time distribution

$$\begin{aligned} n'_{\mu p}(t) &= -(\lambda_{\mu} + \Lambda_{pp\mu} + \Lambda_{pAr} + \Lambda_{S} + \Lambda_{pf})n_{\mu p}(t), & n_{\mu p}(t = 0) &= 1 - f \\ n'_{\mu Ar}(t) &= \Lambda_{pAr}n_{\mu p}(t) - (h\lambda_{\mu} + \Lambda_{Ar})n_{\mu Ar}(t), & \text{and } n_{\mu Ar}(t = 0) &= f, \\ n'_{Ortho}(t) &= \Lambda_{pp\mu}n_{\mu p}(t) - (\lambda_{\mu} + \lambda_{op} + \Lambda_{O})n_{Ortho}(t), & \text{where } n_{Ortho}(t = 0) &= 0 \\ n'_{Para}(t) &= \Lambda_{pf}n_{\mu p}(t) + \lambda_{op}n_{Ortho}(t) - (\lambda_{\mu} + \Lambda_{P})n_{Para}(t). & \text{and } n_{Para}(t = 0) &= 0. \end{aligned}$$

ר

$$n_e^{ ext{Obs.,Ar}}(t) = \lambda_\mu \left( n_{\mu p}(t) + n_{ ext{Para}}(t) + n_{ ext{Ortho}}(t) 
ight) + e_{ ext{Ar}} h \lambda_\mu n_{\mu ext{Ar}}(t).$$

- Differential equations, initial conditions, full time distribution.
- Atomic physics parameters f, h, and e<sub>Ar</sub>
  - relative contribution of µAr state decays
- The hydrogen kinetic rates,  $\lambda_{\mu}$ ,  $\Lambda_{S}$ ,  $\lambda_{op}$ ,  $\Lambda_{p\phi}$ ,  $\Lambda_{O}$ , and  $\Lambda_{P}$ 
  - Directly affect the time distribution of events
- The fit function is A n<sub>e</sub>(t)+B

### Fit to the decay electron time distribution



- 4.25 x 10<sup>8</sup> events
- Basic fit results
  - Λ<sub>ppµ</sub>=2.208(65) x 10<sup>4</sup> s<sup>-1</sup>
  - Λ<sub>pAr</sub>=4.529(15) x 10<sup>4</sup> s<sup>-1</sup>
  - Λ<sub>Ar</sub>=1.302(14) x 10<sup>6</sup> s<sup>-1</sup>
- *χ2/Ndf*=0.983(64)

### **Carry-overs in Computational Biology**

- Analysis of complex data from a high-throughput computational environment.
  - C++ code development
  - Statistical analysis
- Integrative study of processes on multiple spatial and temporal scales.
- The extraction and interpretation of results from complex systems.



### What controls phenotypic diversity?



11

How are gene expressed? The central dogma.



http://www.ncbi.nlm.nih.gov/Class/MLACourse/Modules/MolBioReview/central\_dogma.html

Who regulates whom?



#### DNA methylation Chromatin DNase I hypersensitive Functional modifications genomic sites elements Nucleosome Histone Transcription-factor Long-range binding sites chromatin interactions Transcription Transcription DNA factor machinery Promoter Protein-coding Long-range regulatory architecture and non-coding elements transcripts Chromosome

### **Regulation of Gene Expression is Multilayered**

Image: ENCODE Consortium

One mode of gene regulation: transcription factor binding at cis-regulatory elements in the genome.



### Modeling a regulatory network



### Types of data for reconstructing networks

- Physical
  - ChIP-chip and ChIP-seq
  - Sequence-specific binding motifs
  - Regulator centric
- Functional
  - Gene expression
  - Measure dynamic information
  - Can potentially recover genome-wide regulatory networks



### Samples/Conditions



Expression levels

### **Expression-based network inference**



# MERLIN: A network reconstruction method to predict regulators of genes and modules



Roy et al, 2013 Plos comp bio

### **MERLIN** learning algorithm



### **Data from The Cancer Genome Atlas**

- Cancer Genome Atlas Research Network:
  - Weinstein et al. Nat Genet. 2013
- Microarray gene expression data for 6 cancers:
  - (1) Breast (BRCA)
  - (2) Colon (COAD)
  - (3) Kidney ma (KIRC)
  - (4) Lung (LUSC)
  - (5) Ovarian (OV)
  - (6) Uterine (UCEC).
- 54 (UCEC) to 598 (OV) patient samples
- 8499 genes were selected
  - Variation in expression across patient samples in each data set
  - Any gene annotated in curated NCI cancer pathways
- 1050 were known transcription factors TFs and kinases regulators



**Expression Data** 

### The inferred networks are distinctly different



F-score or harmonic mean for the set of edges in the network

How great is the overlap of edges in the network from cancer A and the network of cancer B?





## Common regulators are associated with chromatin, cell cycle and immune response

Consists of edges between 75 regulatory proteins and 156 target genes





### **Expression in consensus modules**



### Validating that our modules are biologically coherent



Here we have several sets of annotated genes, and each set provides us lists of gens with a certain biological significance. We look to find if our modules are significantly enriched in genes from any of these annotated sets using a Hypergeometric test Above we count the fraction of modules that have an enrichment with 0.05 significance in the results from each data set.

### An example of a module



Targets of regulators predicted by MERLIN

| Targets of regulators predicted by MERLIN |
|-------------------------------------------|
| Targets of regulators f MSigDB motifs     |
| Not annotated                             |

**Row-zero-meaned expression values** 

-2.0 -1.6 -1.2 -0.8 -0.4 0.0 0.4 0.8 1.2 1.6 2.0

### **Enrichments for motifs of immune system regulators**



- interferon regulatory factor (IRF) family all cancers
- regulatory factor X (RFX) five cancers
- signal transducer and activator of transcription (STAT1) five cancers
- All regulators of the immune system

### Immune system function is over-represented



TCR pathway calcium signaling in CD4+ T cells

### Is the immune system induced or repressed?



### Summary

- We have introduced stability-selection into our MERLIN-based approach to infer regulatory networks across different conditions.
- Our approach builds on the idea that both module- and network-based characterization of transcriptional programs are important.
- Our methods can be extended with additional data types.

Knaack SA, Siahpirani AF, Roy S. A pan-cancer modular regulatory network analysis to identify common and cancer-specific network components. *Cancer Inform*. 2014 Oct 28;13(Suppl. 5):69-84.

doi: 10.4137/CIN.S14058 PMID: 25374456 [PubMed]





### Conclusions

Work with beautiful complex systems, rich for exploration and discovery.

Computational biology is a fast paced field, with many emerging technologies and methods.

The mindset towards measurements is different than what you are used to from physics.

It's a field that will have an increasing impact on medicine and human health as we learn more.



### **Acknowledgements**



- My mentor, Sushmita Roy
- Members of the Roy Group
- Funding support from
  - National Science Foundation, CAREER grant (SR)
  - National Library of Medicine training grant NLM5T15LM007359 (SK)
- You!

Thanks to Sushmita Roy and Alireza Siahpirani for contributing slides on gene regulatory networks.