EM

A waveguide is constructed from a rectangular tube of perfectly conducting material. Its hollow core occupies the region 0 < x < a, 0 < y < bAssume that a > b. The z axis runs along the tube. The tube is filled with a dielectric with permittivity ϵ and permeability μ . You will investigate the properties of *transverse electric*, or "*TE*" modes, in which the longitudinal component E_z of the electric field is identically zero. You are therefore seeking solutions to Maxwell's equations of the fom

$$\mathbf{E}(x, y, z, t) = (E_x(x, y), E_y(x, y), 0) \exp\{ik_z z - i\omega t\}, \mathbf{B}(x, y, z, t) = (B_x(x, y), B_y(x, y), B_z(x, y)) \exp\{ik_z z - i\omega t\}.$$

- a) What boundary conditions are obeyed by the **E** and **B** fields at the surface of the perfect conductor?
- b) It is possible to introduce a scalar function $\psi(x, y)$ in terms of which one (and only one) of the following pairs of equations holds

$$B_x = \frac{\partial \psi}{\partial x}, \quad B_y = \frac{\partial \psi}{\partial y}, \quad (i)$$
$$E_x = \frac{\partial \psi}{\partial x}, \quad E_y = \frac{\partial \psi}{\partial y}, \quad (ii)$$

Which pair, (i) or (ii), holds as consequence of Maxwell's equations and the condition $E_z = 0$?

- c) Use your result for part (b) to derive the equation obeyed by the scalar function $\psi(x, y)$ in the interior of the waveguide, and also the boundary condition that ψ obeys at surface (x = 0, a or y = 0, b) of the perfect conductor.
- d) Waves with an angular frequency ω below some cutoff frequency ω_{\min} are unable to propagate in the waveguide. Solve your equation from part (c) so as to find the mode with the <u>lowest</u> cutoff frequency and express ω_{\min} in terms of a, b, μ and ϵ .
- e) Use your result from part (d) to write down the relation between ω and k_z for frequencies above ω_{\min} . Show that the phase velocity ω/k_z is greater that the speed of light for all such frequencies. Explain why can we not make use of this fact for faster-than-light communication.