EMA a plane wave has an electric field given by

$$
\mathbf{E}(\mathbf{r}, t)=\mathbf{E}_{0} \exp \{i(\mathbf{k} \cdot \mathbf{r}-\omega t)\}
$$

The wave propagates in an anisotropic and optically active material whose permittivity ε is a 3 -by- 3 hermitian matrix

$$
\varepsilon=\varepsilon_{0}\left[\begin{array}{ccc}
\alpha & i \beta & 0 \\
-i \beta & \alpha & 0 \\
0 & 0 & \alpha
\end{array}\right] .
$$

Here ε_{0} is the usual permittivity of the vacuum, and α and β are real constants. The rows and columns of the matrix relate to the x, y and z directions. The electric displacement field \mathbf{D} is related to \mathbf{E} by the matrix product $\mathbf{D}=\varepsilon \mathbf{E}$.
a) Use Maxwell's equations to obtain a matrix equation obeyed by the vector \mathbf{E}_{0} whose solution will allow you to find the possible polarization directions and values of ω for each wave vector \mathbf{k}. [Hint: Note that $\nabla \cdot \mathbf{E}$ is not necessarily zero. Also you may find the identity

$$
\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \cdot \mathbf{c}) \mathbf{b}-(\mathbf{a} \cdot \mathbf{b}) \mathbf{c}
$$

to be of use.]
b) Find the eigenvalues and eigenvectors of the matrix ε.
c) Consider the propagation of plane waves in the z direction. Use your results from parts (a) and (b) to find the two allowed polarization vectors and dispersion relations (i.e. how does ω depend on k_{z}) for these waves.
d) The matrix $\boldsymbol{\varepsilon}$ has three eigenvectors. Explain why your answer to part (a) shows that only two of them are valid polarization vectors?
e) In the plane $z=0$ the electric field for a wave polarized in the x direction and propagating in the z direction is given by

$$
\mathbf{E}(t)=\left|\mathbf{E}_{0}\right| \mathbf{e}_{x} \exp \{-i \omega t\}
$$

where \mathbf{e}_{x} is the unit vector in the x direction. Find the angle through which the polarization has rotated after the wave has propagated a distance d.

