Q3 A charge Q moves on the x axis at constant relativistic velocity $-v \hat{\mathbf{x}}$. At the moment that the charge Q is at the origin, the fields at the point $(x, y, z)=(0, d, 0)$ are

$$
\begin{aligned}
\mathbf{E} & =\frac{Q}{4 \pi \epsilon_{0}} \frac{\gamma}{d^{2}} \hat{\mathbf{y}} \\
\mathbf{B} & =-\frac{Q}{4 \pi \epsilon_{0}} \frac{v}{c^{2}} \frac{\gamma}{d^{2}} \hat{\mathbf{z}},
\end{aligned}
$$

where

$$
\gamma=\frac{1}{\sqrt{1-v^{2} / c^{2}}}
$$

A test charge q is moving parallel to the x axis on the line $y=d, z=0$ at the same constant relativistic speed - but in the opposite direction. It reaches the point $(0, d, 0)$ at the same time that charge Q is at the origin.
a) Find the force on q due to Q at the moment that Q is at the origin and q is at $(0, d, 0)$.
b) In the present frame of reference, the fields produced by Q obey the condition $\mathbf{E} \cdot \mathbf{B}=0$. Will this condition remain true in all inertial frames?

For the remaining problems consider the frame in which the charge q is at rest.
c) Find the speed of the charge Q in the frame in which q is at rest.
d) Find the \mathbf{E} and \mathbf{B} fields at the position of test charge q due to charge Q, at the moment that they have the same x co-ordinate in the frame in which q is at rest. You may either Lorentz transform the given fields, or use your result from part (c).
e) Find the force on q due to Q, at the moment they have the same x co-ordinate in the frame in which q is at rest.
f) Should the forces in parts (a) and (e) be equal? If so, why? If not, why not?

