7

A thin, spherical shell of radius R has a potential of $+V_{0}$ on the northern hemisphere and a potential of $-V_{0}$ on the southern hemisphere.

(a) Find the magnitude and direction of the electrical field at the center of the shell by expanding $V(r)$ as:

$$
V=\sum_{\ell=0}^{\infty}\left(a_{\ell} r^{\ell}+\frac{b_{\ell}}{r^{\ell+1}}\right) P_{\ell}(\cos \theta)
$$

(b) Show that $V(r)$ only includes contributions from the odd ℓ terms.
(c) Calculate $V(r)$ up to and including the $\ell=3$ term for $r \ll R$. Use this expression for $V(r)$ to calculate \vec{E} near the origin using Cartesian coordinates and unit vectors. Check your answer by showing that $\vec{\nabla} \cdot \vec{E}=0$.
(d) Calculate the potential to leading order in $\frac{1}{r}$ in the region $r \gg R$.

Hint $\int_{-1}^{1} P_{\ell}(x) P_{\ell^{\prime}}(x) d x=\frac{2}{2 \ell+1} \delta_{\ell \ell^{\prime}}$

