A uniform charge density sphere of radius a has total charge Q. It is surrounded by a spherical shell that is centered on the same origin. Let r denote the radial distance from this origin. The shell is made of copper, having inner and outer radii b and c, respectively, and the shell is kept at potential V.

(a) Find the potential Φ and the field \vec{E} in the four marked regions: I (charged sphere); II (vacuum); III (copper shell); and IV (vacuum). Assume $\Phi(\infty)=0$. Carefully sketch the radial $\Phi(r)$, label the axes, and indicate the values of the potential at $r=a$, b, and c.
(b) Find the total electrostatic energy inside radius b.
(c) Next, consider the slightly modified geometry shown below. The copper shell that surrounds the sphere is now grounded and the inner sphere of radius a is different. It has a surface charge distribution arranged so that $\Phi(a, \theta, \phi)=V \cos ^{2} \theta$. Find $\Phi(r, \theta, \phi)$ for the region between the sphere and the shell; i.e., $a<r<b$

