An insulating sphere of radius R contains a fixed spherically symmetric distribution of electric charge with density $\rho(r)$. The dependence of $\rho(r)$ on radius r is not specified.

The sphere rotates rigidly with angular frequency vector $\mathbf{O}=\Omega \hat{z}, \Omega>0$.
(a) Give an expression for the electrostatic potential $\phi(\mathbf{r})$ at any point \mathbf{r} in terms of an integral involving $\rho(r)$. The potential is zero at infinity.
(b) Give an expression for the current density vector $\mathbf{j}(\mathbf{r})$ in terms of the quantities given, at any point inside the sphere.
(c) Give an expression for the magnetic field vector $\mathbf{B}(\mathbf{r})$ at any point \mathbf{r} in space in terms of an integral over the current density found in part (b).
(d) Find a simple expression for the ratio $\frac{|\mathbf{B}(0)|}{\phi(0)}$ in terms only of Ω and fundamental constants.
(e) Give the direction of $\mathbf{B}(0)$ if the charge density is positive everywhere.

HINT: You may find it convenient to use the vector relation

$$
\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \cdot \mathbf{c}) \mathbf{b}-(\mathbf{a} \cdot \mathbf{b}) \mathbf{c}
$$

