A wire loop (loop 1 in the figure) of radius a, centered at the origin of a cylindrical (ρ, ϕ, z) coordinate system, lies in the $z=0$ plane and has a current $I_{1}=I_{0} \cos (\omega t)$ flowing around it. A second loop (loop 2 in the figure), of radius b, lies in the $z=z_{0}$ plane with its center on the z-axis. Assume that $z_{0} \gg a$ and $z_{0} \gg b$. (The figure is not to scale.) Also, ignore radiation effects.
(a) Consider the magnetic field produced at position $\rho=b$ and $z=z_{0}$ (i.e., on loop 2) by the current I_{1}. The field is proportional to I_{1} :

$$
\begin{aligned}
& B_{\rho}=a_{\rho} I_{1} z_{0}^{\alpha} \\
& B_{\phi}=a_{\phi} I_{1} z_{0}^{\beta}, \\
& B_{z}=a_{z} I_{1} z_{0}^{\gamma}
\end{aligned}
$$

where a_{ρ}, a_{ϕ}, and a_{z} are not functions of I_{1} or z_{0}.
i. Show that $a_{\phi}=0$.
ii. What are the values of α and γ ?

In case you could not solve part (a), you may express your answers to parts (b), (c), and (d) in terms of α and γ, as well as the other quantities defined in the problem.
(b) Assume that loop 2 has self inductance, L, and negligible resistance. Determine I_{2}, the current induced in loop 2 as a function of time. Take positive current to be in the direction of increasing ϕ, as shown in the figure.
(c) Calculate the z-component of the force on the second loop as a function of time.
(d) Assume that ω is sufficiently large that the height of loop 2 (which has mass, m) is determined only by the time averaged force. Determine the equilibrium height, z_{0}. Gravity, \vec{g}, points in the $-z$ direction.
(e) Calculate a_{ρ} and a_{z} in terms of a, b, z_{0}, and constants. Keep only the largest nonvanishing terms in a / z_{0} and b / z_{0}.

