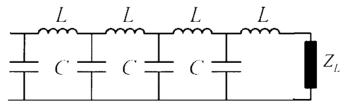

An infinite lossless coaxial transmission line is characterized by its inductance and capacitance per unit length, L_0 and C_0 . The figure below represents a model of such a transmission line; here $L = L_0 \Delta x$ and $C = C_0 \Delta x$. The voltage and current are described by functions V(x,t) and I(x,t).



(a) Show that the transmission line is described by the partial differential equations

$$\frac{\partial V}{\partial x} = -L_0 \frac{\partial I}{\partial t} \qquad \text{and} \qquad \frac{\partial I}{\partial x} = -C_0 \frac{\partial V}{\partial t},$$

which can be obtained by taking the continuum limit $\Delta x \rightarrow 0$ in the circuit above.

- (b) Find the form of the traveling-wave solutions to the partial differential equations in part (a).
- (c) Determine the velocity of propagation of waves on the transmission line in terms of the parameters of the line.
- (d) Determine the characteristic impedance of the line, i.e., $Z_0 = V / I$.
- (e) Now suppose that the line is terminated with a load of impedance Z_L . Show that the ratio of the reflected voltage wave to the incident voltage wave is $\Gamma = (Z_L Z_0) / (Z_L + Z_0)$.

