Consider two nearly concentric conducting spherical shells. They have radii a and b, as shown. Their centers are misaligned by a small distance, δ . Charge +Q is placed on the outer sphere and -Q on the inner.

a. Let $\delta = 0$. Calculate the potential $V(r, \theta, \phi)$ in the three regions (I, II, and III) described below:

For convenience, pick V = 0 at r = 0.

- I. Inside the outer surface of the small sphere $(r \le a)$,
- II. Between the spheres (a < r < b),
- III. Outside the inner surface of the large sphere (r > b).

Suppose the large sphere is offset by a small distance, δ , along the z axis, as shown in the figure. The small sphere remains centered at the origin.

- b. Calculate the electric dipole moment of the system. (It is not $Q\delta$.)
- c. To first order in δ , the inner surface of the outer sphere is described by the equation, $r = b + \delta \cos \theta$. The function that describes the potential in region II must satisfy, at

$$r=a$$
 and $r=b$, boundary conditions of the form $V=v_{o}+v_{1}\cos\theta$. Calculate v_{oa}, v_{1a}, v_{ob} , and v_{1b} .

d. Calculate, to first order in δ , the potential $V(r,\theta,\phi)$ in the three regions described in part (a). If you were unable to determine v_{oa} , v_{1a} , v_{ob} , and v_{1b} in part (c), leave them as symbols in your answer.

