An isolated, uniformly magnetized sphere of radius a has constant magnetization $\boldsymbol{M}_{l}=M_{o} \boldsymbol{z}$ inside the sphere $(r \leq a)$.
a.) State clearly the mathematical boundary conditions on the \boldsymbol{B} and \boldsymbol{H} fields on the surface of the uniformly magnetized sphere.
b.) Determine the functional form of the \boldsymbol{B} and \boldsymbol{H} fields inside the sphere (region 1, $r \leq a$) and outside the sphere (region 2, $r>a$).
c.) Draw pictures of $\boldsymbol{B}, \boldsymbol{H}$ and \boldsymbol{M} in the neighborhood of the sphere - interior and exterior to the sphere.
d.) The uniformly magnetized sphere with constant magnetization $\boldsymbol{M}_{l}=M_{o} \boldsymbol{z}$ inside the sphere $(r \leq a)$ is now placed in a uniform magnetic field, $\boldsymbol{B}_{o}=B_{o} \boldsymbol{z}$. Show that

$$
M_{o}=\frac{3}{4 \pi}\left(\frac{\mu-1}{\mu+2}\right) B_{o}
$$

where μ is the magnetic permeability of the sphere.

