EM FALL OI A

An infinitely thin, perfectly conducting sheet lies in the plane z = 0 of an otherwise empty space.

a) A current is introduced into the conductor so that the z-component of the B field is $B_z = B_{z0} \cos(kx)$

just above and below the sheet; here $k \ge 0$. Find B at all points outside the sheet; you may assume that $B \to 0$ as $z \to \infty$. Hint: recall that a vector field v satisfying $\nabla \times \mathbf{v} = 0$ may be rewritten in terms of a "potential" $\psi(\mathbf{v} = \nabla \psi)$ satisfying $\nabla^2 \psi = 0$.

b) Sketch the field lines in the x-z plane, making sure you indicate their direction.

If you were unable to solve part a), in the following write the formulae in terms of the unknown function B(x,y,z).

- e) How much work, per unit area in the x-y plane, was required to produce this electromagnetic field?
- d) Find the surface current density in the sheet.
- e) Now suppose that the conducting sheet is embedded in a medium with constant relative magnetic permeability μ/μ_0 , and that currents in the sheet produce a field

$$B_{z} = B_{z0} \cos(kx)$$

Just above and below the sheet. What is the new surface current density in the sheet?