EMSpring01B

A metal sphere of radius a is placed inside a grounded hollow metal sphere of radius b. The total charge on the inner sphere is q.

- (1) Consider first the simple case in which the two spheres are concentric.
 - (a) Find the potential in the space between the spheres.
 - (b) Find the surface charge density σ on the inner sphere.
- (c) Find the net electrostatic force F acting on the inner sphere, indicating magnitude and direction.
- (2) Now treat the case in which the two spheres are not concentric, but assume that the departure from spherical symmetry is small as follows (see figure below): The distance between the centers of the two spheres is c, where $c \ll a$, $c \ll b$ and $c \ll |b-a|$. In the following, work to linear order in c, neglecting terms involving second and higher powers.
 - (a) Find the potential in the space between the spheres.

Hint: Work in spherical polar coordinates centered on the inner sphere, with the z axis connecting the centers, as shown in the figure below; θ is the polar angle. Use the fact that $R \approx b + c \cos(\theta)$ and that to linear order in c, departures from spherical symmetry need only be kept to linear order in $\cos(\theta)$.

- (b) Find the surface charge density σ on the inner sphere.
- (c) Find the net electrostatic force F acting on the inner sphere, indicating magnitude and direction.

