EM 7a1100A

At high enough frequency pure water behaves as a non-conducting dielectric where the electric permittivity is ϵ and the magnetic permeability is μ . The relative electric permittivity, $\epsilon_r = \epsilon / \epsilon_o$, is complex, i.e. $\epsilon_r = \epsilon_{real} + i \epsilon_{imag}$, and the relative magnetic permeability, $\mu_r = \mu / \mu_o = 1$. ϵ_o and μ_o are the electric permittivity and magnetic permeability of vacuum. The graph below shows ϵ_{real} and ϵ_{imag} as functions of inverse wavelength, λ^{-1} . As is customary in the presentation of such data, the wavelength displayed is the wavelength in vacuum.

A) For a transverse electromagnetic plane wave in vacuum, state the relation between the inverse wavelength in vacuum, λ^{-1} , and ω , the angular frequency.

[continued on next page]

i.e. $k = k_{real} + i k_{imag}$.

B) Find an expression for the phase velocity, and find an expression for the distance over

which the electric field drops by a factor of 1/e. This distance is the attenuation length.

For parts B through E below consider a transverse electromagnetic plane wave in water

with angular frequency ω, propagating in the z direction. Each component of the electric

field is proportional to $\exp(i(kz - \omega t))$, where the wave number, k, is complex,

C) Express ε_{real} and ε_{imag} in terms of k_{real} , k_{imag} , ω and c, the speed of light in vacuum.

D) Find the numerical value of the phase velocity in the low frequency limit.

E) From the graph $\varepsilon_{real} = \varepsilon_{imag} = 40$ at $\lambda^{-1} = 50$ m⁻¹. At this wavelength ε_{imag} is a maximum.

Find the numerical value of the attenuation length at this wavelength.