## EM 701199B

A physicist discovered that the signal from her coaxial cable of length  $\ell=200~m$  did not excite the test circuit inside her experimental apparatus. The cable terminated with a load resistance  $R_L=50\Omega$ . In order to find the location and the nature of the fault, she sent a short positive pulse of height  $V_i=0.5V$ . She used a function generator with an output impedence equal to the cable impedance  $Z=50\Omega$  and watched the signal on the oscilloscope. She found, on the oscilloscope display, the same polarity and same height pulse  $V_r$  after 500~ns from the test pulse.

The coaxial cable is constructed such that the speed of voltage and current waves in the cable is  $2 \times 10^8$  m/s.



(a) Show that the sketch shown below represents the equivalent electric circuit of the experiment. Determine  $V_{eff}$  in terms of  $V_i$ .



- (b) Determine the amplitude of the reflected pulse  $V_r$  if the cable has no fault.
- (c) What was the nature of the fault (open-circuit, short circuit) and where was it located?