An insulating sphere of radius R contains a fixed spherically symmetric distribution of electric charge with density $\rho(r)$. The form of the function $\rho(r)$

as a function of radius r is not specified. The sphere rotates rigidly with angular frequency vector $\mathbf{\Omega} = \Omega \hat{\mathbf{z}}$, $\Omega > 0$.

terms of an integral involving $\rho(r)$. The potential is zero at infinity.

B) Give an expression for the current density vector $\mathbf{j}(\mathbf{r})$ in terms of the quantities

A) Give an expression for the electrostatic potential $\phi(\mathbf{r})$ at any point \mathbf{r} in

given, at any point inside the sphere.

C) Give an expression for the magnetic field vector **B(r)** at any point **r** in

space in terms of an integral over the current density found in part (B).
D) Find a simple expression for the ratio $\frac{|B(0)|}{\phi(0)}$ in terms only of Ω and fundamental constants.

E) Give the direction of ${f B}(0)$ if the charge density is positive everywhere.

HINT: You may find it convenient to use the vector relation $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}$