EMSpring 98B

The atmosphere on the distant planet Zardov can be modeled as a leaky spherical capacitor. In a coordinate system with the origin at the center of Zardov, the conductivity of its atmosphere can be approximated by $\sigma = (3 \times 10^{-14} + 5 \times 10^{-15} \, (r-r_z)^2) \, \text{mho/}m \qquad r-r_z < r_0$

$$r-r_z \ge r_0$$

$$r_z+r_0$$

$$\sigma=\infty$$

- $\sigma = \infty$ where $r_z = 10^6$ meters is the radius
 of Zardov. Assume that at Zardov's
 surface there exists an electric field
- toward the center of Zardov. For parts

 (a) and (b) of this problem, assume that

of 100 V/m, pointed radially inward

the charge on the capacitor is replenished as quickly as it leaks off, so

conductivity are sec⁻¹, and 1 mho/ $m = 9 \times 10^9$ sec⁻¹.)

(a) Find the radial component of the current density as a function of r, and evaluate any constants.

there is a steady state situation. (If you prefer to work in Gaussian units, the dimensions of

- (b) Find the charge density in the atmosphere as a function of r.
 (c) Because the conductivity σ is discontinuous at r = r_z+r₀ there is a very thin shell of charge at this radius. Find the total charge in the atmosphere,
- including this shell of charge.

 (d) If the charge on Zardov were not replenished by, for example, lightning storms, it would be neutralized by the current flow. Assuming that the
 - storms, it would be neutralized by the current flow. Assuming that the conductivity is a constant given by its value at Zardov's surface ($\sigma = 3 \times 10^{-14}$ mho/m), calculate the time constant for this discharge.