EM 70/1974

(a)

(b)

Two perfectly conducting metallic hemispherical shells of radius a are separated by a very small insulating gap and form \circ sphere of radius a, as shown.

Suppose the top hemisphere has static potential $+V_0$ and the lower hemisphere has static potential -V₀. Calculate the electric dipole moment, p₀.

Work parts (b) and (c) to lowest nonvanishing order in ω :

potential $+V_0 \cos(\omega t)$ and the bottom shell has potential $-V_0 \cos(\omega t)$. Sketch the pattern of the radiated power as a function of the polar angle, θ .

Suppose the potentials oscillate at low frequency, so that the top shell has

Calculate the time averaged power radiated per unit solid angle as a (c) function of a, ω , V_o , θ , and appropriate constants. If you have forgotten the formula for radiated power, a correct dimensional analysis will earn you nearly full credit.

For what values of ω is it a good approximation to consider only the lowest (d) nonvanishing order in ω ?