
EM7all96B

- (a) Consider a semi-infinite solenoid of radius b situated along the z axis from $-\infty$ to 0. It has n turns per unit length and a current I_1 , running through the coil. Find the magnetic field B_z on the symmetry axis at any point z on the positive z axis.
- (b) In cylindrical coordinates, derive an expression for the radial component of the magnetic field, B_{ρ} , a height z above the top of the coil and a distance a away from the z axis. Work in the limit a << b.
- (c) Now consider a ring of current I_2 and radius a positioned at height +z, shown as a dotted circle in the figure. The direction of I_2 is the same as I_1 . Calculate the magnitude of the force on this ring in terms of a, I_2 , and B_{ρ} . What is the direction of this force?
- (d) Consider a diamagnetic substance suspended by a spring just above the solenoid along the z axis. With no current in the solenoid, the sample is at rest. Next, the current is turned on in the solenoid. What happens to the sample on the spring? Justify your answer.

