BQM. In parts (a) and (b) of this problem you can ignore any spin possessed by the quantum particle.
a) A quantum particle moving in the $z=0$ plane has a wavefunction that in r, θ, polar coordinates is given by

$$
\chi(r, \theta) \equiv\langle r, \theta \mid \chi\rangle=a(r) \exp \{i n \theta\}, \quad n \text { an integer. }
$$

Let \hat{L}_{z} be the angular momentum operator that acts on states $|\psi\rangle$ as

$$
\langle r, \theta| \hat{L}_{z}|\psi\rangle=-i \hbar \frac{\partial}{\partial \theta}\langle r, \theta \mid \psi\rangle,
$$

Show that $|\chi\rangle$ is an eigenstate of the operator $\hat{R}(\varphi)=\exp \left\{-i \varphi \hat{L}_{z} / \hbar\right\}$, where φ is a real parameter. What is the eigenvalue?
b) Another state $|\Psi\rangle$ has a wavefunction that can be expanded as

$$
\langle r, \theta \mid \Psi\rangle=\sum_{n=-\infty}^{\infty} a_{n}(r) \exp \{i n \theta\}
$$

By using your result from part (a) compute $\langle r, \theta| \hat{R}(\varphi)|\Psi\rangle$ and hence show that $\hat{R}(\varphi)|\Psi\rangle$ can be interpreted as the state $|\Psi\rangle$ after it has been rotated through some angle about the origin. Through what angle and in which sense (clockwise or anticlockwise) is the rotation if $\varphi=\pi / 2$? In the remaining parts of the problem we consider the effect of rotations on the spin part of the wavefunction of a spin- $1 / 2$ particle. Here

$$
\hat{\mathbb{I}}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad \hat{S}_{x}=\frac{\hbar}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \hat{S}_{y}=\frac{\hbar}{2}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \hat{S}_{z}=\frac{\hbar}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

c) By expanding the exponential, show that $\exp \left\{-i \varphi \hat{S}_{x} / \hbar\right\}=A \hat{\mathbb{I}}+B \hat{S}_{x}$ where A and B are functions of φ that you should find.
d) Let

$$
|\uparrow\rangle \equiv\binom{1}{0}, \quad|\Phi\rangle \equiv \exp \left\{-i(\pi / 2) \hat{S}_{x} / \hbar\right\}|\uparrow\rangle
$$

Compute $\langle\Phi| \hat{S}_{x}|\Phi\rangle,\langle\Phi| \hat{S}_{y}|\Phi\rangle,\langle\Phi| \hat{S}_{z}|\Phi\rangle$. Demonstrate that your results are compatible with interpreting the action of $\exp \left\{-i(\pi / 2) \hat{S}_{x} / \hbar\right\}$ as a rotation about the x axis.

