AQM. In the absence of any spin-orbit coupling the bound eigenstates of the single-electron hydrogen atom are denoted by $|n, l, m_l, m_s\rangle$. They have energy $E_n = -R/n^2$ where R is the Rydberg constant. You will consider the effect of including a spin-orbit interaction

$$\hat{H}_{\rm spin-orbit} = \beta \, \hat{\mathbf{L}} \cdot \hat{\mathbf{S}},$$

which we will treat as a perturbation. Here β is a real parameter, $\hat{\mathbf{L}}$ is the operator corresponding to orbital angular momentum of the electron, and $\hat{\mathbf{S}}$ is its spin operator.

- a) Before the spin-orbit interaction is switched on, what is the degeneracy of the n = 2 energy level? List the possible states using the notation $|n, l, m_l, m_s\rangle$.
- b) Once the spin-orbit interaction is switched on, the degeneracy of the E_n level is partially lifted and l, m_l , and m_s are no longer "good" quantum numbers (*i.e.* they are no longer the eigenvalues of operators that commute with the Hamiltonian). What is a new set of good quantum numbers?
- c) Consider the perturbed eigenstates that arise from the n = 2, l = 1 states. Compute, to first order in β , the shift in the energies from $E_{n=2}$. How many distinct energies are there after the perturbation, and what is the degeneracy of each?
- d) For the energy level with the highest degeneracy, write down all the perturbed eigenstates as explicit linear combinations of the original n = 2, l = 1 basis states $|2, 1, m_l, m_s\rangle$.

Hint:

$$\hat{\mathbf{J}}^2 \equiv (\hat{\mathbf{L}} + \hat{\mathbf{S}})^2 = \hat{\mathbf{L}}^2 + \hat{\mathbf{S}}^2 + 2\,\hat{\mathbf{L}}\cdot\hat{\mathbf{S}}.$$

Some possibly useful Clebsch-Gordan coefficients $\langle j_1, m_1; j_2, m_2 | j_{\text{tot}}, m_{\text{tot}} \rangle$:

$$\langle 1, m_l; \frac{1}{2}, \pm \frac{1}{2} | \frac{3}{2}, m_{\text{tot}} \rangle = \sqrt{\frac{\frac{3}{2} \pm m_{\text{tot}}}{3}}; \quad \langle 1, m_l; \frac{1}{2}, \pm \frac{1}{2} | \frac{1}{2}, m_{\text{tot}} \rangle = \pm \sqrt{\frac{\frac{3}{2} \mp m_{\text{tot}}}{3}};$$