QM This problem relates to some quantum aspects of muon catalysis of the fusion reaction $d + t \rightarrow \alpha + n$.

- a) Explain (no derivation needed) what needs to be done to the textbook hydrogen-atom problem with $V(\mathbf{r}) = -ke^2/|\mathbf{r}|$ (where k depends on your choice of units) to take into account that the electron and nucleus **both move** about their common center of mass. Recall that for the textbook fixed-nucleus problem the hydrogen ground-state energy is $E_0 = -13.6 \,\mathrm{eV} = -m_e k^2 e^4 / 2\hbar^2$.
- b) A μ^- can bind with any of the nuclei p, d, t to form a muonic atom. Which one will have the lowest ground-state energy?
- c) Compute the energy difference (in eV's) between the ground states of the muonic atoms $d\mu^-$ and $t\mu^-$.

Now suppose that a muonic molecule composed of the three particles $dt\mu^$ is formed. Since the μ^- is significantly lighter than either of the nucleons, in this part of the question we will **ignore the nuclear motion** and use the Born-Oppenheimer approximation in which the nuclei are held fixed a distance R apart, and a Schrödinger equation is solved to find the groundstate energy E(R). The actual nuclear separation will be that R which makes E(R) a minimum.

- d) Write down the Schrödinger equation that must be solved to find E(R).
- e) Let $\psi_0(\mathbf{r})$ be the minimum-E(R) ground-state eigenfunction for the electron in the dte^- molecule. Adapt the same function ψ_0 to solve the $dt\mu^-$ problem. Hence find the ratio of bond lengths and the ratio of the chemical binding energy $E_{\text{binding}} = \min\{E(R)\}$ for the $dt\mu^-$ molecule compared to the dte^- molecule.
- f) For the fusion reaction to occur the two nuclei, d and t, must be in the total J = 3/2 nuclear spin state. Assuming that the spins of the two nuclei are initially unpolarized, what is the probability that J = 3/2?

particle		charge	spin	mass (MeV)
electron	e^-	-1	1/2	0.511
muon	μ^{-}	-1	1/2	106
proton	p	+1	1/2	938
deuteron	d	+1	1	1876
triton	t	+1	1/2	2791