$Q M B$ The Hamiltonian of an electron at rest in magnetic field \mathbf{B} is given by

$$
H=\frac{e \hbar}{2 m c} \boldsymbol{\sigma} \cdot \mathbf{B}
$$

Here $\boldsymbol{\sigma}=\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)$, where σ_{i} are the Pauli matrices. Suppose that $\mathbf{B}=B_{z} \mathbf{e}_{z}+B_{0} \mathbf{e}_{x}$, where $B_{z}>0$ and $B_{0}>0$ are constant. Let θ be the angle between \mathbf{B} and the z-axis. The Hamiltonian is therefore

$$
H=\frac{\hbar}{2}\left[\begin{array}{rr}
\omega_{z} & \omega_{0} \\
\omega_{0} & -\omega_{z}
\end{array}\right]=\frac{\hbar \sqrt{\omega_{z}^{2}+\omega_{0}^{2}}}{2}\left[\begin{array}{rr}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right] .
$$

where $\omega_{z}=e B_{z} / m c$ and $\omega_{0}=e B_{0} / m c$.
a) Compute the eigenvalues and normalized eigenvectors of H. (You may find the following half-angle identities useful: $\sin (\theta / 2)=\sqrt{(1-\cos \theta) / 2}$ and $\cos (\theta / 2)=\sqrt{(1+\cos \theta) / 2})$.
b) Let $|+\rangle$ and $|-\rangle$ denote the spin-up and down eigenstates of σ_{z}. Express

c) Suppose you find the electron in the $|+\rangle$ state at time $t=0$. Compute the probability that it will be in the $|-\rangle$ state at time $t>0$. Express your answer in terms of ω_{0} and ω_{z}.

Suppose now that the magnetic field is replaced by a time dependent field $\mathbf{B}(t)=B_{z} \mathbf{e}_{z}+B_{0} \cos (\omega t) \mathbf{e}_{x}+B_{0} \sin (\omega t) \mathbf{e}_{y}$, where $B_{z}, B_{0}, \omega>0$ are constants.
d) Let $|\psi(t)\rangle$ denote the state vector for this new system. Derive the Schrödinger equation satisfied by the transformed state $|\tilde{\psi}(t)\rangle=R(t)|\psi(t)\rangle$, where

$$
R(t)=\left[\begin{array}{cc}
e^{i \omega t / 2} & 0 \\
0 & e^{-i \omega t / 2}
\end{array}\right]
$$

Note that $|\tilde{\psi}(t)\rangle$ is the state vector in the frame that is co-rotating with the time-dependent \mathbf{B} field.
e) If the electron is in the $|+\rangle$ state at time $t=0$, what is the probability that it will be in the $|-\rangle$ state at time $t>0$. Express your answer in terms of $\omega_{z}, \omega_{0}, \omega$.

