
Q1 Consider the n = 1 and n = 2 states of an electron in a hydrogen
atom. The energy eigenfunctions ψnlm(r, θ, φ) are
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Here a is the Bohr radius. Expressions for the spherical harmonics Y m
l (θ, φ)

may be found in the formulæ pages at the beginning of the exam.
The hydrogen atom is now immersed in a uniform electric field that adds

a perturbation
H ′ = eEz = eEr cos θ

to the original Hamiltonian.

a) Use first-order perturbation theory to show that the shift of the ground
state energy due to H ′ is zero. You may do this by either explicit
calculation, or by applying selection rules based on angular-momentum
addition rules and/or parity.

b) The four n = 2 states have the same energy, and so degenerate per-
turbation theory must be used. By the application of selection rules
and symmetries (or by explicit calculation) show that of the 16 matrix
elements 〈2, l,m|H ′|2, l′, m′〉, only one pair, consisting of a matrix ele-
ment and its complex conjugate, can be non-zero. Evaluate these two
non-zero matrix elements and express them in terms of a, e and E.

c) Use the 4-by-4 matrix 〈2, l,m|H ′|2, l′, m′〉 to compute the energy shifts
of the n = 2 energy levels.

Useful Integral:
∫
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dr rne−r/b = n!bn+1.


