Q3 A one-dimensional harmonic oscillator has the quantum Hamiltonian

$$
\hat{H}=\frac{1}{2 m} \hat{p}^{2}+\frac{1}{2} m \omega^{2} \hat{x}^{2}, \quad[\hat{x}, \hat{p}]=i \hbar
$$

Recall that the normalized energy eigenstates are given by $|n\rangle=\left(\hat{a}^{\dagger}\right)^{n}|0\rangle / \sqrt{n!}$ where

$$
\hat{a}^{\dagger}=\sqrt{\frac{m \omega}{2 \hbar}} \hat{x}-i \sqrt{\frac{1}{2 \hbar m \omega}} \hat{p}, \quad \hat{a}=\sqrt{\frac{m \omega}{2 \hbar}} \hat{x}+i \sqrt{\frac{1}{2 \hbar m \omega}} \hat{p},
$$

and $|0\rangle$ is the ground state, which obeys $\hat{a}|0\rangle=0$.
a) Compute the commutators $\left[\hat{a}, \hat{a}^{\dagger}\right],[\hat{H}, \hat{a}]$ and $\left[\hat{H}, \hat{a}^{\dagger}\right]$, and hence evaluate the time-dependent operator

$$
\hat{a}(t) \stackrel{\text { def }}{=} e^{i \hat{H} t / \hbar} \hat{a} e^{-i \hat{H} t / \hbar}
$$

in terms of \hat{a}, m, ω and \hbar.
b) Given a complex parameter α, we define the corresponding coherent state $|\alpha\rangle$ to be

$$
|\alpha\rangle=e^{|\alpha|^{2} / 2} \sum_{n=0}^{\infty} \frac{\alpha^{n}}{\sqrt{n!}}|n\rangle .
$$

Show that $|\alpha\rangle$ is a normalized eigenstate of \hat{a}. What is the associated eigenvalue?
c) If the system is in the coherent state $|\alpha\rangle$, what is the probability that the system is in the energy eigenstate $|n\rangle$?
d) If the system is the state $|\alpha\rangle$ at time $t=0$, show that at time t it is in another coherent state $|\beta\rangle$. How is the parameter β related to α ?
e) Compute $X=\langle\alpha| \hat{x}|\alpha\rangle$ and $P=\langle\alpha| \hat{p}|\alpha\rangle$. Then, using your results from parts (a),(b) and (d), evaluate $X(t), P(t)$. Draw a figure showing the trajectory of the point $(X(t), P(t))$ in the X, P plane, and relate your plot to some aspects of the classical harmonic oscillator.

