Consider a one-dimensional, symmetric double potential well system (well height V_0 ; well boundaries at $x = \pm a, \pm b$, as illustrated below), that contains a quantum mechanical particle of energy *E*. Assume $E < V_0$.

- (a) Write down general solutions to the Schrödinger equation in regions I, II, III, IV, and V in terms of amplitudes, *E*, *V*₀, *x*, and fundamental constants. State the boundary conditions necessary for determining the amplitudes. Do **not** solve for the amplitudes.
- (b) When the potential wells are well-separated so that we can make a two-state approximation, the basis states Ψ_L and Ψ_R are the groundstate wavefunctions confined to the left and right wells, respectively. In addition, each groundstate has energy E_0 .
 - (i) Sketch the groundstate wavefunctions (first copy the illustration above into your exam books, then make the sketch).
 - (ii) If the basis states have an interaction energy ΔE , express the Hamiltonian for this "tunneling" system as a 2 2 matrix. Calculate the eigenvalues and eigenvectors for this system.
- (c) Sketch the two lowest energy eigenstates of the tunneling system.
- (d) Consider the case where the energies of Ψ_L and Ψ_R are changed by a small amount, α and α , respectively. The quantity $\alpha << V_0$, and the basis states still have interaction energy ΔE .
 - (i) Express the Hamiltonian for this system as a 2 2 matrix.
 - (ii) Sketch the two lowest energy eigenstates of this system. Is the energy difference between the two lowest energy states bigger, smaller, or the same as the case where $\alpha = 0$?
- (e) Going back to the case of unperturbed ($\alpha = 0$) basis states, let's now consider the timedependence of the system. Let the particle initially be in the left well, so that $\Psi(t=0) = \Psi_L$. Suppose that the particle can tunnel through the potential barrier in a time τ . Estimate τ in terms of ΔE .
- (f) Now explicitly calculate the time-dependence of $\Psi_L(t)$ to show that the particle eventually returns to its initial state (at least, to within a phase factor).