## 0

Consider an isotropic two-dimensional harmonic oscillator of unit mass. The coordinates in the plane of oscillation are $x, y$. The quantum Hamiltonian is given by

$$
H=-\frac{\hbar^{2}}{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)+\frac{\omega^{2}}{2}\left(x^{2}+y^{2}\right),
$$

where $\omega$ is the frequency of the oscillator.
(a) As a trial wave function, use

$$
\Psi_{0}=N \exp \left(-\frac{\alpha}{2}\left(x^{2}+y^{2}\right)\right),
$$

where $N$ is a normalization constant and $\alpha$ is a constant to be determined. Using the Schrodinger equation, demand that $\Psi_{0}$ is an energy eigenstate, and find the value of $\alpha$ and the energy $E_{0}$ of the state. Leave $N$ undetermined. Give a brief argument as to why $\Psi_{0}$ is or is not the ground state of the system.
(b) It is useful in this problem to define $x_{ \pm}=x \pm i y, p_{ \pm}=p_{x} \pm i p_{y}$. Using the basic commutation rules between coordinates and momenta, determine the four commutators: $\left[p_{a}, x_{b}\right]$ for $a= \pm, b= \pm$. Write the Hamiltonian in terms of $p_{ \pm}$and $x_{ \pm}$.
(c) Define the operator $B^{\dagger}$ by $B^{\dagger}=\omega x_{+}-i p_{+}$. Use the results of (b) to show that the commutator $\left[H, B^{\dagger}\right]$ is of the form

$$
\left[H, B^{\dagger}\right]=\beta B^{\dagger},
$$

where $\beta$ is a constant. Determine the value of $\beta$.
(d) Consider the state $B^{\dagger} \Psi_{0}$. Using the results of (c), show that this state is an eigenstate of $H$, and determine its energy. Give the formula for $B^{\dagger} \Psi_{0}$ explicitly in terms of $x, y$, up to an undetermined normalization constant. Will applying $B^{\dagger}$ repeatedly to $\Psi_{0}$ lead to additonal eigenstates? Explain your answer.
(e) The isotropy of the oscillator leads to a conserved angular momentum operator $L$ given by

$$
L=\frac{i}{2}\left(x_{+} p_{-}-x_{-} p_{+}\right) .
$$

Show that $L$ is conserved. The states $\Psi_{0}$ and $B^{\dagger} \Psi_{0}$ are eigenstates of $L$. Determine their eigenvalues.

