8

Consider an isotropic two-dimensional harmonic oscillator of unit mass. The coordinates in the plane of oscillation are x, y. The quantum Hamiltonian is given by

$$H=-\frac{\hbar^2}{2}(\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2})+\frac{\omega^2}{2}(x^2+y^2),$$

where ω is the frequency of the oscillator.

(a) As a trial wave function, use

$$\Psi_0 = N \exp(-\frac{\alpha}{2}(x^2 + y^2)),$$

where N is a normalization constant and α is a constant to be determined. Using the Schrodinger equation, demand that Ψ_0 is an energy eigenstate, and find the value of α and the energy E_0 of the state. Leave N undetermined. Give a brief argument as to why Ψ_0 is or is not the ground state of the system.

- (b) It is useful in this problem to define $x_{\pm} = x \pm iy$, $p_{\pm} = p_x \pm ip_y$. Using the basic commutation rules between coordinates and momenta, determine the four commutators: $[p_a, x_b]$ for $a = \pm, b = \pm$. Write the Hamiltonian in terms of p_{\pm} and x_{\pm} .
- (c) Define the operator B^{\dagger} by $B^{\dagger} = \omega x_{+} ip_{+}$. Use the results of (b) to show that the commutator $[H, B^{\dagger}]$ is of the form

$$[H, B^{\dagger}] = \beta B^{\dagger},$$

where β is a constant. Determine the value of β .

- (d) Consider the state $B^{\dagger}\Psi_0$. Using the results of (c), show that this state is an eigenstate of H, and determine its energy. Give the formula for $B^{\dagger}\Psi_0$ explicitly in terms of x, y, up to an undetermined normalization constant. Will applying B^{\dagger} repeatedly to Ψ_0 lead to additional eigenstates? Explain your answer.
- (e) The isotropy of the oscillator leads to a conserved angular momentum operator L given by

$$L = \frac{i}{2}(x_+p_- - x_-p_+).$$

Show that L is conserved. The states Ψ_0 and $B^{\dagger}\Psi_0$ are eigenstates of L. Determine their eigenvalues.