4

A particle of mass m moves in a one-dimensional potential well having both infinitely high potential walls at $x= \pm a$, and an attractive one-dimensional δ-function potential well of strength α located at $x=0$:

$$
\begin{array}{ll}
V(x)=-\alpha \delta(x) & |x|<a \\
V(x)=\infty & |x| \geq a
\end{array}
$$

(a) Show by integrating the Schrödinger equation across the δ-function that the wavefunction for this potential exhibits a discontinuous change of slope across the δ-function given by:

$$
d \psi /\left.d x\right|_{0+}-d \psi /\left.d x\right|_{0-}=-\left(2 m \alpha / \hbar^{2}\right) \psi(0)
$$

(b) Assuming that α is small, qualitatively sketch the wavefunctions associated with (i) the ground state, (ii) the $1^{\text {st }}$ excited state, and (iii) the $2^{\text {nd }}$ excited state of the particle confined in the potential above.
(c) Assume that α is small, so that the δ-function potential can be treated as a small perturbation on the infinite square well potential ($\alpha=0$). For the lowest three energy levels, use first-order perturbation theory to estimate the energy difference $\Delta E_{n}^{(1)}$ between the eigenvalues of the full potential shown above ($\alpha \neq 0$), and those of the infinite square well potential ($\alpha=0$).
(d) If the infinite potential walls are moved to $x= \pm \infty$ (as shown below), for finite α, one can show that there will be one bound state of the δ-function potential with an energy E_{1}. Sketch this bound state wavefunction of the δ-function potential.

(e) Use the variational trial wavefunction $\psi_{t r}=A e^{-b x^{2}}$ to obtain an upper-bound on the bound state energy of the δ-function potential E_{1}.

The following integrals may be useful:

$$
\int_{-\infty}^{\infty} x^{2 n} e^{-a x^{2}} d x=\frac{1 \cdot 3 \cdot 5 \cdots}{2^{n} a^{n}} \sqrt{\frac{\pi}{a}} \quad \int_{-\infty}^{\infty} e^{-a x^{2}} d x=\sqrt{\frac{\pi}{a}}
$$

