A-8

4

A particle of mass *m* moves in a one-dimensional potential well having both infinitely high potential walls at $x = \pm a$, and an attractive one-dimensional δ -function potential well of strength α located at x = 0:

- (a) Show by integrating the Schrödinger equation across the δ -function that the wavefunction for this potential exhibits a discontinuous change of slope across the δ -function given by: $\frac{d\psi}{dx}\Big|_{0+} - \frac{d\psi}{dx}\Big|_{0-} = -(2m\alpha/\hbar^2)\psi(0)$
- (b) Assuming that α is small, qualitatively sketch the wavefunctions associated with (i) the ground state, (ii) the 1st excited state, and (iii) the 2nd excited state of the particle confined in the potential above.
- (c) Assume that α is small, so that the δ -function potential can be treated as a small perturbation on the infinite square well potential ($\alpha = 0$). For the lowest three energy levels, use first-order perturbation theory to estimate the energy difference $\Delta E_n^{(1)}$ between the eigenvalues of the full potential shown above ($\alpha \neq 0$), and those of the infinite square well potential ($\alpha = 0$).

4

(d) If the infinite potential walls are moved to $x = \pm \infty$ (as shown below), for finite α , one can show that there will be one bound state of the δ -function potential with an energy E_1 . Sketch this bound state wavefunction of the δ -function potential.

(e) Use the variational trial wavefunction $\psi_{tr} = Ae^{-bx^2}$ to obtain an upper-bound on the bound state energy of the δ -function potential E_1 .

The following integrals may be useful:

$$\int_{-\infty}^{\infty} x^{2n} e^{-ax^2} dx = \frac{1 \cdot 3 \cdot 5 \cdots}{2^n a^n} \sqrt{\frac{\pi}{a}} \qquad \qquad \int_{-\infty}^{\infty} e^{-ax^2} dx = \sqrt{\frac{\pi}{a}}$$