A particle with spin $S=1$ has spin operators S, and $S_{\text {, }}$ represented by the 3×3 matrices:

$$
\mathrm{S}_{2}=\hbar\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right), \mathrm{S}_{\mathrm{x}}=\frac{\hbar}{\sqrt{2}}\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

(a) Determine the 3×3 matrix representing the spin operator S_{y} for this spin 1 particle.
(b) The spin state for this particle is generally represented by a column vector

$$
\psi=\left(\begin{array}{l}
\mathrm{a} \\
\mathrm{~b} \\
\mathrm{c}
\end{array}\right)
$$

Determine a, b, and c such that the spin state ψ is normalized and corresponds to the maximum possible value of S_{x}.
(c) Now, consider a magnetic field B pointing in the $+z$ direction. Assume that the spin 1 particle has a magnetic moment μ, and at $t=0$ is placed in the magnetic field such that its initial spin state is that given in part (b), i.e., it is polarized along the $+x$ direction. Find the spin state ψ at later times.
(d) What is the probablility that the spin state of the particle will be polarized along the +x direction at a time later than $\mathrm{t}=0$?

Useful information: For a general angular momentum state
$\left|\mathbf{j}, \mathrm{m}>,\left(\mathrm{J}_{\mathrm{x}} \pm \mathrm{iJ}_{\mathrm{y}}\right)\right| \mathbf{j}, \mathrm{m}>=\boldsymbol{\hbar} \sqrt{(\mathrm{j} \mp \mathrm{m})(\mathrm{j} \pm \mathrm{m}+1)} \mid \mathrm{j}, \mathrm{m} \pm 1>$

