A molecule consists of three equal atoms which form an equilateral triangle of side L as shown. The eigenstates of an electron in this molecule can be considered as linear combinations of orthonormal basis states, ϕ_i , centered on each atom i=1,2,3. In this basis the Hamiltonian has diagonal matrix elements $\langle \phi_i | H | \phi_i \rangle = \varepsilon$, and off-diagonal matrix elements between neighboring basis states i and j, $\langle \phi_i | II | \phi_j \rangle = -t$, where the energy t > 0.

(a) Define the operator R which operates on the basis functions as follows:

 $R\phi_i = \phi_{i+1}, i = 1, 2; R\phi_3 = \phi_1$. Note that R has the effect of rotating the basis functions around the triangle and that $R^3 = 1$. Show that R commutes with the Hamiltonian.

(b) The eigenstates ψ_n of R with eigenvalues λ_n can be expressed as $\psi_n = \sum_{i=1}^3 a_{ni} \phi_i$. Find the expansion coefficients a_{ni} and the eigenvalues λ_n .

[Hint: note that $\lambda_n^3 = 1$.]

- (c) Give the energy eigenvalues in terms of ε and t and give their degeneracies.
- (d) Now suppose an electric field of strength F is switched on in the $\pm x$ -direction.

The only effect is to change the diagonal matrix elements of the Hamiltonian at each site by an amount eFx_i , where x_i is the x position of the center of atom i, and -e is the charge of the electron. Find the new energy eigenvalues to linear order in F.