Consider the one-dimensional problem of a particle of mass m in a gravitational field g. Let z be the coordinate giving the height above an impenetrable floor.

- a) Write down the time-independent Schrödinger equation that describes the particle in an eigenstate of energy E.
- b) Give an expression for E_0 , the ground-state energy, (in terms of m, g, and Planck's constant \hbar) which is correct to within a dimensionless factor.
- c) Sketch the ground-state wavefunction, $\psi_0(z)$, and the first excited state wavefunction , $\psi_1(z)$, for both positive and negative z.
- d) How many nodes does $\psi_n(z)$, the wavefunction of the nth excited state, have for z > 0?
- e) Find $<\psi_n|z|\psi_n>$ in terms of E_n , m, g, and \hbar , again to within a dimensionless factor. Is that dimensionless factor bigger than or smaller than one? (Explain how you know.)
- f) Using the results of the previous parts, find an approximate expression for the dependence of E_n/E_0 on n, for n>>1.