QM 7allo3A

Here are three short problems regarding the quantum mechanics of spin.

Problem 1

- (a) A spin- $\frac{1}{2}$ particle is subjected to a homogenous magnetic field along the y-axis at time t=0. State the Hamiltonian of the system in the basis of eigenstates of the spin operator \hat{S}_z , i.e., the states $|\frac{1}{2},\frac{1}{2}\rangle$, $|\frac{1}{2},-\frac{1}{2}\rangle$ in the $|s,s_z\rangle$ basis.
- (b) Determine an initial spin state that does not change, except by an overall phase factor, after the magnetic field is applied.
- (c) Assume that the spin- $\frac{1}{2}$ particle considered in (a) is initially polarized along the positive z-axis, i.e., is in the state $|\frac{1}{2}, \frac{1}{2}\rangle$. Determine the probability to find the particle subsequently in state $|\frac{1}{2}, -\frac{1}{2}\rangle$ at time t.

Problem 2

Now consider two spin- $\frac{1}{2}$ particles 1 and 2 that are described through the spin operators \vec{S}_1 and \vec{S}_2 . They are subject to exchange interaction, i.e., their Hamiltonian is $H = J \vec{S}_1 \cdot \vec{S}_2$. There is no magnetic field acting on the spins. Determine the stationary states and associated energies of the system.

Problem 3

Finally, consider the decay of a neutron n

$$n \to p + e + \bar{\nu} \,. \tag{1}$$

Assume that the neutron decays from a spin state $|\frac{1}{2}, \frac{1}{2}\rangle$. Which (normalized) wave function for the spins of p (proton), e (electron), and $\bar{\nu}$ (antineutrino) results from the decay under the condition of conservation of total spin?