OMSpring 02B

This problem is one-dimensional. Ignore motion along y and z axes.

A molecule consists of two nuclei of mass m_1 , m_2 , located at x_1 , x_2 , and bound together by a 1-d harmonic oscillator potential with spring constant k. The Hamiltonian is

$$\hat{H} = -\frac{\hbar^2}{2m_1} \frac{\partial^2}{\partial x_1^2} - \frac{\hbar^2}{2m_2} \frac{\partial^2}{\partial x_2^2} + \frac{1}{2} k(x_1 - x_2)^2.$$

The two-particle eigenstates $\psi_{\{P,n\}}(x_1,x_2)$ are labelled by the total momentum $P=p_1+p_2$ of the two particles, and by the harmonic oscillator quantum number n of the relative vibrational mode.

- a) Make a change of variables so as to express the Hamiltonian in terms of the center of mass co-ordinate R and the relative co-ordinate $r = x_2 x_1$. What are the allowed vibrational energies?
- b) Write down an explicit expression for the normalized wavefunction $\psi_{\{P,n=0\}}(x_1,x_2)$ in terms of \hbar , m_1 , m_2 , x_1 , x_2 and k. (Use box normalization, *i.e.* periodic boundary conditions for x_1 and x_2 with period L much larger than the size of the molecule.)

Immediately before t=0 the molecule is in its ground state i.e. $\psi(x_1,x_2,t=0_-)=\psi_{\{0,0\}}$. At t=0 the nucleus of mass m_2 emits a gamma ray and recoils with momentum I. Imediately after t=0 the wavefunction is therefore $\psi(x_1,x_2,t=0_+)=\psi_{\{0,0\}}(x_1,x_2)e^{iIx_2/\hbar}$. (Ignore any change in m_2 due to the emission of the gamma ray.)

- c) Write down, in terms of $\psi(x_1, x_2, t = 0_+)$ and $\psi_{\{I,0\}}(x_1, x_2)$, the expression that gives the *amplitude* for the molecule to end up with center-of-mass momentum I, but no vibrational energy.
- d) Using your explicit formula for $\psi_{\{P,n=0\}}$, evaluate the expression from the previous part and determine the *probability*, P_0 , that the molecule ends up with center-of-mass momentum I, but no vibrational energy.

HINT: The ground-state wavefunction for $\hat{H} = -\frac{\hbar^2}{2M} \frac{\partial^2}{\partial x^2} + \frac{1}{2}kx^2$ is $\psi_0(x) = \left(\frac{\alpha}{\pi}\right)^{\frac{1}{4}} e^{-\frac{1}{2}\alpha x^2}$, where $\alpha = \sqrt{Mk}/\hbar$. Also

$$\int_{-\infty}^{\infty} e^{-\frac{1}{2}ax^2 + ibx} dx = \frac{1}{\sqrt{2\pi a}} \exp\{-\frac{1}{2}b^2/a\}.$$