(a) A beam of particles of mass m_b and momentum p_i is scattered by a weak potential H_1 that can be considered as a small perturbation: $H = H_0 + H_1$,

$$H_0 = -\frac{\hbar^2}{2m_b} \nabla_b^2$$
 and $H_I = \lambda e^{-(r_b/\alpha)^2}$

where \mathbf{r}_{b} is the position of the particle measured from the scattering center.

- (a.1) What is the magnitude $|\mathbf{q}|$ of the momentum transferred by the potential to the scattered particle as a function of $|\mathbf{p}_i|$ and the scattering angle θ .
- (a.2) Using the golden rule for transition probability:

$$T_{i\to f} = \frac{2\pi}{\hbar} \left| \langle f|H_I|i\rangle \right|^2 \rho_f,$$

where ρ_f is the density of final states, calculate the differential scattering cross section:

$$d\sigma = \frac{T_{i \to f}}{\text{incident flux}}$$

to order λ^2 . Your answer may contain |q|.

(b) Now consider the case in which the above beam of particles is incident on a target particle of mass m_t bound in a potential $W(\mathbf{r}_t)$. The Hamiltonian is

$$H_0 = -\frac{\hbar^2}{2m_b} \nabla_b^2 + H_t$$
 where $H_t = -\frac{\hbar^2}{2m_t} \nabla_t^2 + W(r_t)$

and

$$H_{l} = \lambda e^{-(r_{b}-r_{t})^{2}/\alpha^{2}}$$

Let $\phi_0(\mathbf{r}_t)$ and $\phi_1(\mathbf{r}_t)$ be the normalized ground and first excited eigenfunctions of H_t with energies E_0 and E_1 . We observe both elastic scattering, and also inelastic scattering where the target is excited to the state $\phi_1(\mathbf{r}_t)$.

- (b.1) What are the wave functions of the initial and final states for elastic and inelastic scattering. You may use \mathbf{p}_f to denote the momentum of the scattered particle without calculating it as a function of θ .
- (b.2) Calculate the elastic and inelastic scattering cross sections to order λ^2 . You may use **q** to denote momentum transfer without calculating it as a function of θ .
- (b.3) Show that in the limit $|\mathbf{q}| \to 0$ the elastic scattering cross section becomes identical to that for scattering by the potential $\lambda e^{-(r_b/\alpha)^2}$ considered in part (a), while the inelastic cross section becomes zero.

Note: $\int d^3 r e^{-r^2/\alpha^2} e^{-i \mathbf{k} \cdot \mathbf{r}} = \pi^{3/2} \alpha^3 e^{-k^2 \alpha^{2/4}}$.