QMFa1100B

Consider a spin $-\frac{1}{2}$ particle with charge e and mass m. The Hamiltonian that describes its interaction with a time-dependent magnetic field B(t) is

$$H_0 = -\frac{ge}{2mc} S(t) \cdot B(t) ,$$

where g is a constant and $S = (\hbar/2)\sigma$ is the spin operator, in terms of the Pauli operator σ .

A) Show that the evolution of the spin is described by the equation

$$\frac{dS(t)}{dt} = \frac{ge}{2mc} S(t) \times B(t).$$

- B) Suppose that the magnetic field is $\mathbf{B} = B_0 \hat{\mathbf{z}}$, where B_0 is a constant and $\hat{\mathbf{z}}$ is the unit vector in the z direction. Draw a diagram showing qualitatively the motion of \mathbf{S} relative to \mathbf{B} .
- C) Assume that B is the same as in part B and that the spin is pointing in the x direction at time t = 0. What are the expected values of the x, y, and z components of the spin as functions of time for t > 0?
- D) Suppose that the magnetic field and the initial conditions are the same as in part C, except that now a very brief magnetic field pulse $B_1(t) = B_0 \tau_1 \delta(t-\varepsilon) \hat{y}$ is applied to the particle at time ε , i.e., immediately after t = 0 (treat ε as arbitrarily small). Assume that τ_1 is small enough that the effects of the magnetic pulse can be treated to first order. Write down the condition on τ_1 needed to guarantee this (express your answer in terms of e, m, g, and B_0). What are the expected values of the x, y, and z components of the spin as functions of time for $t > \varepsilon$?

You may use the Pauli matrices to solve this problem, if you wish, but they are not necessary. They are $\sigma_x \equiv \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\sigma_y \equiv \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, and $\sigma_z \equiv \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.