QMSpring98B

Consider the three-level system defined by the Hamiltonian Ho with distinct

respectively. This system is subject to a time-independent perturbation, H₁, with real matrix elements:

eigenvalues ε_A , ε_B and ε_C , corresponding to the eigenstates $|A\rangle$, $|B\rangle$ and $|C\rangle$,

 $\langle A|H_1|A\rangle = \langle B|H_1|B\rangle = \langle C|H_1|C\rangle = 0$

and

 $\langle A|H_1|B\rangle = \langle B|H_1|C\rangle = M$; and $\langle A|H_1|C\rangle = 0$

(a)

Calculate the energy eigenvalues of the full Hamiltonian H₀+H₁to second

order in M (i.e., including terms of order M²). (b) Calculate the corrections to the state vectors IA, IB, and IC, to order M.

(c)

Suppose now that the unperturbed states are degenerate, so that

 ε_A , = ε_B = ε_C = ε . Calculate the eigenvalues and eigenvectors of the full Hamiltonian to leading order in M.