QM 701197B

this problem all degrees of freedom other than the spins are to be ignored, and h = 1. Let \hat{s}_1 , \hat{s}_2 , \hat{s}_3 and \hat{s}_4 be the operators for spins of the particles.

Consider a system of four distinguishable particles, each with spin 1/2. In

- What is the eigenvalue of \hat{s}_1^2 ? (a) (b) How many states are needed to make a complete orthogonal basis set
- for this system? What are the possible eigenvalues of $\hat{\mathbf{S}}^2$, where (c) $\hat{\mathbf{S}} = \hat{\mathbf{s}}_1 + \hat{\mathbf{s}}_2 + \hat{\mathbf{s}}_3 + \hat{\mathbf{s}}_4$

$$\mathbf{s} = \mathbf{s}_1 + \mathbf{s}_2 + \mathbf{s}_3 + \mathbf{s}_4$$
 is the operator for the total spin.

Calculate the energy spectrum of this system for the Hamiltonian (d) $\mathbf{\hat{H}}_0 = (\mathbf{\hat{s}}_1 \cdot \mathbf{\hat{s}}_3 + \mathbf{\hat{s}}_2 \cdot \mathbf{\hat{s}}_4) \mathbf{A}$

In the presence of a magnetic field B in the z-direction, the Hamiltonian (e)

becomes: $\hat{\mathbf{H}} = \hat{\mathbf{H}}_0 + g \mathbf{B} \left(\hat{\mathbf{s}}_{z,1} + \hat{\mathbf{s}}_{z,2} + \hat{\mathbf{s}}_{z,3} + \hat{\mathbf{s}}_{z,4} \right),$ where g is a constant and $\boldsymbol{\hat{s}}_{z,i}$ denotes the operator for the z-component of the spin of particle i. Sketch how the energy levels of \mathbf{H}_0 will split

in a weak magnetic field ignoring terms of order B² and higher.