QMSpring 97A (a) interaction between the proton and neutron can be approximated by a threedimensional square well potential in the center-of-mass frame: The deuteron is a weakly bound state of a neutron and a proton. The nuclear $$V(r) = \begin{cases} -V_N & r < r_N = 10^{-13} \mathrm{cm} \\ 0 & r > r_N \end{cases}$$ where r is the separation between the proton and the neutron at positions \vec{r}_p and \vec{r}_n respectively. In the center-of-mass frame the two-body problem reduces to that of a single particle with reduced mass μ moving in the potential well V(r). and m_p and find the radial Schrödinger equation for this system. (b) Assuming a bound state exists, what is the angular momentum of the ground state? Find the ground state wave function in the center-of-mass Derive the reduced mass μ in terms of the neutron and proton masses, m_n - ground state? Find the ground state wave function in the center-of-mass frame. (c) Whether or not the neutron and the proton form a bound state depends on V_N and r_N. Determine V_{min}, the minimum value of V_N for a bound state to exist, in terms of r_N and μ. Calculate V_{min} in MeV using m_p = 938 MeV/c² - and $m_n=940~{\rm MeV/}\,c^2$. (Note: $\hbar c=1.9732710^{-11}{\rm MeV}\,{\rm cm}$) (d) Suppose that V_N is changed by a fraction δ : $V_N=V_{min}~(1+\delta)$. Determine the ground state energy to leading order in δ when $0<\delta<<1$.