QM7a1195A

coordinates x_1 , x_2 , and interact with a potential energy $V(x_2-x_1) = \frac{1}{2} m\omega^2(x_2-x_1)^2$.

Two particles of mass m move in one dimension with

(a) By means of a coordinate rotation from
$$x_1$$
, x_2 to $y = (x_2-x_1)/\sqrt{2}$; $z = (x_1+x_2)/\sqrt{2}$

a) By means of a coordinate rotation from
$$x_1$$
, x_2 to $y = (x_2-x_1)/\sqrt{2}$; $z = (x_1+x_2)/\sqrt{2}$ show that the Hamiltonian can be written in the

$$y=(x_2-x_1)/\sqrt{2};$$
 $z=(x_1+x_2)/\sqrt{2}$ show that the Hamiltonian can be written in the form $H(y,z)=H_{ho}(y)+H_{pw}(z),$ in which H_{ho} has harmonic oscillator solutions $\phi_n(y)$ and H_{pw} has plane wave solutions $\psi_q(z)$. Express the eigenfunction $\Psi_{nq}(y,z)$ for the system in terms of $\phi_n(y)$ and $\psi_q(z)$ and give the corresponding energies E_{nq} in terms of m,ω , and the quantum numbers n and q. Nowhere in this problem do you need to give

[Hint: For a coordinate rotation
$$\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} = \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$
.]

(b) Given that the rms value of the coordinate for a harmonic oscillator with mass M, frequency Ω , is $\sqrt{(\hbar/2M\Omega)}$, determine $\langle y^2 \rangle^{1/2}$ for the ground

explicit forms for the harmonic oscillator functions ϕ_n .

- state of the present problem. (c) Suppose that the two particles are spinless bosons. By considering how this constrains the solutions, write down the two lowest energy solutions for
- q = 0, together with their energies. Sketch these eigenstates. (d) Now suppose instead that the two particles are spin 1/2 fermions, and that appropriate wave functions consist of a product of the above
 - coordinate functions with a spin function. The latter is a combination of the up and down spin functions $s_u(1)$, $s_d(1)$, $s_d(2)$, $s_d(2)$ for the separate particles. By considering how this constrains the solutions, write down explicitly the four lowest energy wave functions, including spin dependence, for q = 0, together with their energies.