${
m SM}$ Consider the thermodynamic equilibrium of the ionization reaction

$$H \rightleftharpoons e^- + p^+$$

between a gas of neutral hydrogen atoms and unbound protons and electrons.

Suppose that in a volume V there are N_{p^+} unbound protons (charge +e), N_H neutral hydrogen atoms, and N_{e^-} unbound electrons. The gas has no net charge, so $N_{p^+} = N_{e^-}$. The binding energy of the hydrogen atom is $\Delta = 13.6$ eV. Let N be the total number of protons present, $x = N_{p^+}/N$ the fraction of free protons, and $N_H = (1 - x)N$ the number of un-ionized hydrogen atoms. Treat all three gases as ideal. The micro-states of the hydrogen gas have energies $E_H = -\Delta + |\mathbf{p}|^2/2m_H$. The protons and electrons have micro-state energies $E = |\mathbf{p}|^2/2m$ where $m = m_{p^+}$ or m_{e^-} respectively.

- a) From the appropriate N-particle partition functions, compute the chemical potentials μ_{e^-} , μ_H , and μ_{p^+} .
- b) When the reaction $H \rightleftharpoons e^- + p^+$ is in equilibrium there will be a relation between μ_{e^-} , μ_H and μ_{p^+} . Write down (no derivation required) this relation.
- c) From parts (a) and (b) deduce that in equilibrium

$$\frac{x^2}{1-x} = \kappa(T, V, N)e^{-\Delta/k_B T},$$

where $\kappa(T, V, N)$ is an expression involving \hbar , k_BT , V, N, m_{e^-} , m_{p^+} and m_H that you should obtain.

d) Does x increase or decrease as the density N/V increases? (If you did not answer the earlier parts, you can still get credit for this part provided you give a physical justification for your answer.)

Useful:
$$\frac{1}{N!} \left[\frac{V}{\hbar^3} \int \frac{d^3 p}{(2\pi)^3} \exp\left\{ -\frac{p^2}{2mk_B T} \right\} \right]^N = \frac{1}{N!} \left[V \frac{[2\pi m k_B T]^{3/2}}{h^3} \right]^N.$$