BSM. Consider a lattice model of a gas consisting of N identical atoms of type A and N identical atoms of type B. Some of the atoms may be bound into molecules AB with binding energy E (i.e. E units of energy are needed to separate the molecule into its atomic components). The lattice has N sites each of which is allowed to contain no more than one of each particle type: A, B or AB. In other words only the following sets of particles
\{empty $\}, \quad\{A\}, \quad\{B\}, \quad\{A B\}, \quad\{A, B\}, \quad\{A, A B\}, \quad\{B, A B\}, \quad\{A, B, A B\}$.
are allowed at each site.
a) Compute the number of microstates for the situation in which the internal energy U of the system is given by $U(r)=-N r E-i . e$. when there are $r N$ molecules $\mathrm{AB},(1-r) N$ unbound atoms of type A, and $(1-r) N$ unbound atoms of type B. In this part of the problem make no approximations.
b) Use your answer to part (a) to compute the entropy $S(U)$ for the system when $U(r)=-N r E$. Use Stirling's approximation $\ln (n!)=n \ln (n)-n$ to simplify your answer. When N is large, show that the entropy per site $s \equiv S / N$ becomes independent of N.
c) Use your answer to parts (a) and the quantity s you found in part (b) to write down the free energy $F(T, r)$, where T is the temperature.
d) Explain how to use $F(T, r)$ to compute the equilibrium value of r as a function of T. Find a closed-form expression for $r(T)$ and evaluate it approximately for the case $k_{\mathrm{B}} T=E / 3$. If you have no calculator, you may approximate $e=2.7182 \ldots$ as 3.0.
e) What value will r take when $T=0$? What value will r take when $T=\infty$? You will get credit for a physical explanation of your answers to this part even if you have been unable to do any other parts of the question.

